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ARTICLE INFO  ABSTRACT  
 

 

In medical diagnosis, testing of the performance of a particular diagnostic test is a common and good 
practice, after classifying the subjects in to different groups by various classification techniques, in 
particularly binary classification.   Assessment of the performance of a diagnostic test can be achieved 
by Area under the Receiver Operating Characteristic  Curve, simply denoted by AUC. For Diseased 
(D) and Healthy (H) normal populations, Bi-exponential model gives a closed form expression to the 
Area under the Curve (AUC). In this paper we report the results of simulated experiments on the 
properties of the AUC of the bi-generalized exponential ROC model.  We first study the sensitivity of 
the AUC to changes in Scale parameter (λ) and Location parameter (µ).  We will show that changes in 
λ do not alter the AUC of the model but with fixed scale parameter in D and H groups the AUC 
changes quickly when the distance between the location parameters is changed. Numerical 
illustrations for the proposed method are given with simulated data. 
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INTRODUCTION 
 
The Receiving Operating Characteristic (ROC) curve is a graphical tool for evaluating the performance of a binary classifier. Even though it 
originated during Second World War, (Green and Swets, 1966, Lloyd (1998)), many researchers highlighted its significance in medicine, 
experimental psychology, finance, banking, data mining etc., in later years. In biomedical applications ROC curve is used for assessing the 
effectiveness of a measured marker (like tumor volume) in distinguishing between diseased and healthy individuals. A person is classified as 
positive or negative  as X > c or X ≤ c.  Let X denote a continuous random variable indicating the measured value for a marker on an individual 
and c be a cutoff value. The result of classification is compared with a result diagnosis (often with a gold standard).  After classification, the 
outcome will have four possible states viz., True Positive (TP), False Positive (FP),True Negative (TN) and False Negative (FN). The objective is 
to find out such a classification rule that minimizes the chance of occurrence of FP and FN cases. The Probability of false positive fraction 
{TN/(TN+FP)} is known as the Specificity (Sp) of the test while the probability of true positive fraction {TP/(TP+FN)} is called the Sensitivity 
(Sn). The ROC curve is a tradeoff between Sn and (1-Sp) at all possible cutoff values. At each cutoff, we get pair (Sn, 1-Sp) and the plot of Sn 
against (1-Sp) gives the ROC curve. 
 
ROC Curve is used for the following purposes 
 
 To estimate the probability of correct classification of an unknown individual into one of the two known groups 
 To identify the optimal cut-off value for the marker under consideration. 
 
The performance of a classifier can be understood from empirical data in terms of percentage of misclassification.  A good classifier shall have 
nearly zero percent misclassification.  In the case of a theoretical ROC model, the performance is measured in terms of the Area under the ROC 
curve (AUC). Larger the AUC value better will be the classification power of the classifier.  A perfect test will have zero misclassification and 
hence AUC = 1. When Sn = (1-Sp) it means the test is unable to distinguish between TP and FP cases. The ROC curve for such test will be a 45o 

line connecting the points (0,0) with (1,1) producing 50% chance of correct classification.  For a good marker, it is expected that Sn > (1- Sp) at any 
cutoff and hence markers having      AUC > 0.5 have interest.   When the underlying distributions are not known, we use non-parametric method to 
estimate the ROC curve and AUC in this method reduces  to the well known Mann-Whitney U test (Hanley and Neil (1982)). 
 
The  Bi-normal and Bi-exponential models: We denote the healthy and diseased groups by H and D respectively.  Let µH and µD denote the means 
and  σୈ

ଶ  and σୌ
ଶ  denote the variances of the normal distribution in the H and D groups respectively.  
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The bi-normal ROC model produces a closed form expression to plot the curve as well as to calculate the AUC.  Properties of this model can be 
found in Kronozowski and Hand (2009).    Then the  bi-normal ROC model  is of the form   
 

ROC(t) = Φ (a + b Φ-1(x(t))                                                                                        (1)     
 
where  a = {µD-µH}/σD and b = σD/σH , Φ( ) is denotes the cumulative N(0,1) and x(t) is a parameter indicating the False Positive Rate  ( 0 ≤ x(t) ≤ 
1) which is obtained at possible cutoff value .  When different cutoff values are close to each the ROC curve becomes smooth.  Faraggi and Reiser 
(2002) have shown that with bi-normal model, the AUC is given by 
 

 AUC=ɸቌ
ஜీିஜౄ

ටఙವ
మାఙಹ

మ
ቍ                                                                                                     (2) 

 
As such the AUC is simply the percentile on the normal distribution.   Not all test results display a normal distribution and some of them can be 
modeled by using a skewed distribution.   For instance when the distribution is exponential with parameter λ in both the groups, Betinec (2008) has 
shown that the bi-exponential ROC is of the form    
 

ROC(t)=𝑡ҫ  whereҫ =
ఒಹ

ఒವ
                                                                                 (3) 

 
Vishnu vardhan , Pundir and Sameera (2012) have shown that the AUC of  bi-exponential model is  
 

AUC =  
ీ

ౄାీ
                                                                                                            (4) 

 
As in the case of binormal model here also the AUC has a closed form expression.   The Generalized Exponential distribution (GED) is a 
distribution widely used in reliability theory and survival analysis.  A theoretical ROC model with this distribution has potential applications in 
developing new markers for predicting an event in survival analysis.    In the following section a brief review about this distribution is given. 
 
The Generalized Exponential Distribution: The GED also called Exponentiated Weibull distribution is a three parameter Weibull model proposed  
by  Mudholkar and Srivastava, Freimer (1995) as a suitable model for life time distribution.  Gupta & Kundu (1997) studied a special case of the 
GE model assuming the location parameter to be zero and compared its performance with the two-parameter Gamma family and the two-parameter 
Weibull family.   The three-parameter GE is characterized by three parameters (α, λ, µ) where  and α, λ, µ  denotes the shape, scale and location 
parameters respectively.  Then the density function of GED is given by   
 

𝑓(𝑥; 𝛼, 𝜆, µ) =
ఈ

ఒ
൬1 − 𝑒

ష(ೣషഋ)

ഊ ൰
ఈିଵ

e
ష(౮షಔ)

ಓ                                                                  (5) 

 
Without loss of generality we take  α = 1 
 
 f(x;1, λ,µ) =(1/λ) e-(x-µ)/λ ;     (x > µ; λ > 0; )                                                             (6) 
 
and the distribution function is  
 
F(x;1, λ,µ) = (1-e-(x-µ)/λ) ;       (x > µ; λ > 0;).                                                            (7) 
 
We use the notation  GE(1, λ,µ) to indicate this distribution. The shape of the density function of GED is shown in Figure-1.  
 

 
 
 

Figure 1. Probability density function of GED(1, λ,µ) 
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In the following section we derive the Bi-GE ROC model using the first principles.  
 
Bi-GED ROC Model: Let X and Y be the random variables indicating the test value in the H & D groups  with underlying GE 
density functions.    
 

𝑔൫𝑥; 𝛼ு,𝜆ு, 𝜇ு൯ =  
ଵ

ఒಹ
𝑒

ି൬
ೣషഋಹ

ഊಹ
൰
 αH=1& λH,µH>0, x>0                                              (8) 

𝑔൫𝑦; 𝛼,𝜆, 𝜇൯ =  
ଵ

ఒಹ
𝑒

ି൬
ೣషഋವ

ഊವ
൰
   αD=1&λD,µD>0,x>0                                               (9)  

 

Since the data on both X and Y is continuous, each data point serves as a possible cutoff denoted by t.  At each cutoff t we find the 

false positive rate x (t) either by counting number of cases of interest or by using a formula (in case of theoretical model). When the 

location parameters is set zero then µH = µD = 0.  Again with αH = αD = 1 we get the case of one parameter bi-GED model proposed 

by Ehtesham Hussain (2011) as 
 

 
 

Figure 2.  Estimated AUC for different values of λ and fixed values of µ 
 

 ROC(t) =1-(1-t)β         0 ≤ t ≤1                                                                                (10)     

where β =  
ఒವ

ౄ
         

Under this model the false positive rate with threshold t is given by  

x(t) = P(X > t|H)        =1 − ቈ1 − 𝑒
ష(షഋಹ)

ഊಹ                       (11) 

This gives  

t = µH – λH* ln(x(t))  (12) 

Now the ROC curve is given by 

Y(t) = P(X > t | D)   

        =1 − ቈ1 − 𝑒
ష(షഋವ)

ഊವ       (13) 

         = 𝑒

ିቀఓಹషഊಹ ౢ(ೣ())షഋವ
ቁ

ఒವ
൘

                                                                                                     

=>   Y(t) = 𝑥(𝑡)ఉ𝑒
൬

ഋವషഋಹ
ഊವ

൰
                                     (14)          

                                                                                                                                                                                                                                                                                                                          

Then the Bi GE ROC model is Y(t) = 𝑥(𝑡)ఉ𝑒
൬

ഋವషഋಹ
ഊವ

൰
                   (14)          where 𝛽 =

ఒಹ

ఒವ
. 

Substituting for x(t) from (11) we get the ultimate from of ROC curve as 
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Y(t)=𝑒
ିఉ൬

షഋಹ
ഊಹ

൰ 
𝑒

൬
ഋವషഋಹ

ഊವ
൰
       (15) 

 

In the following section we find a relationship between µH and µD when a predetermined AUC is required. 

Sensitivity of ROC curve and AUC due to changes in λ and µ: From (14) it follows that the bi-generalized exponential ROC 

model is given by  

 

Y(t) = x(t)βe
൬

μీషμౄ
λీ

൰
  , where β =

λౄ

λీ
  (16) 

Substituting for x(t) from 𝑒
ష(షഋಹ)

ഊಹ we get the ultimate from of ROC curve as 

Y(t) = 𝑒
ିఉ൬

షഋಹ
ഊಹ

൰ 
𝑒

൬
ഋವషഋಹ

ഊವ
൰
                     (17)  

 

where µH , µD , λH and λD are the location and scale of the test result in the two groups.     

The AUC is obtained as ∫ y(t)
ଵ


dFP and this reduces to  

AUC =  
ీ

ీାౄ
e

൬
ಔీషಔౄ

ಓీ
൰
    (18) 

 

When the location parameters is set zero then µH = µD = 0, we get the case of one parameter bi-exponential ROC model. Let μො
ୌ

 and 

μො
ୈ

 represent the estimated means and λୌ, λୈ represent the estimated standard deviations in the H and D groups respectively based 

on samples of size n1 and n2.    

 

 This gives the estimated AUC as 

AUC =  
λీ

λీାλౄ
 e

൬
μොీష

μොౄ

λీ
൰
                                             (19)  

For numerical illustration the parameters are shown as λH and λD without ^. 

 
Illustration-1: Let us consider fixed location parameters µH = 0.30, µD = 0.60.   We have selected three levels for λD and λH as 1.0, 
1.5 and 2.0. Three are 9 combinations of λH and λD at which the AUC is found from (19) and shown in Table- 1.  All the functions 
evaluated using Excel template. 
 
 

Table 1.  List of possible combinations for scale and location parameters 
 

λH λD AUC 

1.0 
0.5 0.6074 
1.0 0.6749 
1.5 0.7328 

1.5 
1.0 0.5399 
1.5 0.6107 
2.0 0.6639 

2.0 
1.5 0.5234 
2.0 0.58091 
2.5 0.6263 

The above pattern is shown in Figure-2 

 
ROC model with specified AUC : Suppose we wish to have the model with AUC = A* (predetermined).  From (17) it follows that 
the AUC of bi-generalized exponential model is given by . 
 
From the above results the following observations can be made  
 

 At each value of λH, the AUC increases linearly with increase in the value of λD 
 As λH increases the AUC value decreases  
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 Figure 2.  Estimated AUC for different values of λ and fixed values of µ  
 

At each combination of λH and λD the factor R = 
λీ

λీାλౄ
 and the corresponding AUC separately evaluated and shown in Table-2. 

 
Table 2 Estimated AUC and variance ratio  (Figures in bracket indicate AUC) 

 

λD 
λH 
1.0 1.5 2.0 

1.0 
0.500 
(0.6074) 

0.400 
(0.6749) 

0.333 
(0.7328) 

1.5 
0.600 
(0.5399) 

0.500 
(0.6107) 

0.429 
(0.6639) 

2.0 
0.667 
(0.5235) 

0.571 
(0.5809) 

0.500 
(0.6264) 

 
It is found that there is a linear relationship between the factor R and the corresponding the AUC as shown table-3. 
 

 
 

Table 3. Relationship between R and AUC 
 

 A∗ =  
ీ

ీାౄ
e

൬
ಔీషಔౄ

ಓీ
൰
   (20)  

 
Hence a one unit change in the factor R results in 0.633 units of change in the AUC.   
 
ROC model with specified AUC: Suppose we wish to have the model with AUC = A* (predetermined).  From (17) it follows that 
the AUC of bi-generalized exponential model is given by  
                                                                                                

Assuming that 𝜆  and 𝜆ு are known constants and putting k = 
ీ

ీାౄ
 it follows that  

 

  A∗ =  ke
൬

ಔీషಔౄ
ಓీ

൰
 

  ln( A*/k) = 
ஜీషஜౄ

ీ
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 ln( A*/k) λୈ =  μୈିμୌ 
This gives 
𝜇 =  𝜇ு + (λୈ* ln (A*/k))                (21) 
 
Thus the mean score for D group can be calculated from μୌ such that a prefixed AUC is attained. 
 
Suppose   λୈ = λୌ.  Then we get k = 1/2 and  
 
 μୈ =  μୌ + (λୈ* ln (2A*))                    (22)   
 
Suppose, we wish to develop an ROC curve such that it has a predetermined A*, like 0.9, 0.8 etc.   Using (21) μୈ and the AUC 
corresponding AUC can be obtained from (20).   In the following section the results of a simulated experiment are presented. 
 
Numerical results: Fixing the required A* as 0.90 we have estimated D by using (5.3.2).   By changing the values of n1, n2 λD, λH, 
and µH we have calculated the AUC by using (19) with the help of the Excel spared sheet as shown in Figure 5.1. The experimental 
results for the target A* as 0.90 are obtained by changing the values of n1, n2,λD, and λH at fixed µH.   For each set of input 
parameters, the corresponding estimate of D is obtained using (21).  In the following section, the calculations are made of two new 
estimates for different values of n1, n2 λD, λH.  
 
Illustration-1:  This experiment is performed with 3 different sets of parameters and different sample sizes.  In each trail λH, λD and 
µH are fixed.  The correcting µD is estimated at the target AUC and shown in square brackets.  The AUC is obtained by both  simple 
average and fixed weight methods.  The bias from the target is also calculated and the results are shown in Table-4.   
 

Table 4. Estimated AUC and Bias as a function sample size (Figures in bracket indicate bias) 

 
Target A* = 0.90 

Sample size 

Trail-1 
λH =0.4, λD =3.5, 
µH = 0.06  
[µD =0.07] 

Trail-2 
λH =1, λD =4, 
µH = 0.5,      
[µD =0.97] 

Trail-3 
λH =2, λD =5, 
µH = 2,         
[µD =2.57] 

AUC AVG AUC FW AUC AVG AUC FW AUC AVG AUC FW 

10 
0.7923 
(0.1077) 

0.8287 
(0.0713) 

0.7103 
(0.1897) 

0.7332 
(0.1667) 

0.6506 
(0.2494) 

0.6548 
(0.2452) 

20 
0.8548 
(0.0452) 

0.8664 
(0.0331) 

0.8120 
(0.0880) 

0.8050 
(0.0949) 

0.7788 
(0.1212) 

0.7515 
(0.1484) 

50 
0.8837 
(0.0163) 

0.8864 
(0.0136) 

0.8664 
(0.0336) 

0.8528 
(0.0472) 

0.8528 
(0.0472) 

0.8222 
(0.0777) 

80 
0.8900 
((0.0100) 

0.8913 
(0.0087) 

0.8792 
(0.0208) 

0.8665 
(0.0334) 

0.8707 
(0.0293) 

0.8437 
(0.0563) 

100 
0.8921 
(0.0079) 

0.8930 
(0.0070) 

0.8834 
(0.0166) 

0.8715 
(0.0284) 

0.8766 
(0.0234) 

0.8516 
(0.0484) 

120 
0.8935 
(0.0065) 

0.8940 
(0.0059) 

0.8862 
(0.0138) 

0.8750 
(0.0249) 

0.8805 
(0.0195) 

0.8572 
(0.0428) 

  
 
Illustration-2:  Similar experiment A* = 0.8 gives the results shown in Table-5 
 

Table 5. Estimated AUC and Bias as a function sample size (Figures in bracket indicate bias) 
 

Target A* = 0.80 

Sample size 

Trail-1 
λH =0.4, λD =3.5, 
µH = 0.06 , 
[µD =0.07] 

Trail-2 
λH =1, λD =4, 
µH = 0.5,     
 [µD =0.50] 

Trail-3 
λH =2, λD =5, 
µH = 2, 
[µD =2.57] 

AUC AVG AUC FW AUC AVG AUC FW AUC AVG AUC FW 

10 
0.7279 
(0.0721) 

0.7852 
(0.0148) 

0.6514 
(0.1486) 

0.6940 
(0.1060) 

0.5950 
(0.2045) 

0.6186 
(0.1814) 

20 
0.7727 
(0.0273) 

0.8043 
(0.0043) 

0.7322 
(0.0678) 

0.7460 
(0.0539) 

0.7006 
(0.0994) 

0.6950 
(0.1050) 

50 
0.7909 
(0.0091) 

0.8077 
(0.0077) 

0.7744 
(0.0256) 

0.7773 
(0.0226) 

0.7613 
(0.0387) 

0.7486 
(0.0513) 

80 
0.7946 
(0.0054) 

0.8080 
(0.0080) 

0.7843 
(0.0157) 

0.7855 
(0.0145) 

0.7760 
(0.0240) 

0.7641 
(0.0358) 

100 
0.7957 
(0.0043) 

0.8084 
(0.0084) 

0.7875 
(0.0125) 

0.7882 
(0.0117) 

0.7809 
(0.0191) 

0.7697 
(0.0302) 

120 
0.7965 
(0.0035) 

0.8087 
(0.0087) 

0.7896 
(0.0104) 

0.7901 
(0.0098) 

0.7841 
(0.0159) 

0.7736 
(0.0264) 

 
From tables 4 & 5 we observe the following As samples increases, the estimated AUC converges to the target AUC. 
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The bias of each estimate decreases when sample size increases: Hence with large sample we can estimate the AUC of the bi-
generalized exponential ROC model with very small bias. We can compare the significance of the difference between the two 
estimates as given below. 
 
Hypothesis testing of new estimates with Target AUC: The two estimates can be compared for their significance of difference by t-
test.   Since the 81 AUC estimates can be treated as a sample of bi-generalized exponential  AUC’s and each of the two estimates is 
an average it is possible to compare them with A* by using Student’s t- test. The null hypothesis is that there is no significant 
difference between the target AUC and the estimated AUC.   
 
The test statistic for comparing AUCAVG with A* is given by  
 

t = ቊ 
େఽృି∗

ୗ
√୬ିଵ

ൗ
   ቋ  (23) 

 

where S = ඥV(AUCୋ)    and  n is number of available AUC values. In the following section, the calculations are made of two new 
estimates for different values of n1, n2, λD and λH at fixed µH. The statistical significance of the difference between the target AUC 
and the AUC obtained by the new estimators is tested and the results are shown in Table-6. 
 

Table -6: t-test for comparing the summarized AUCs with the Target  (Figures in bracket indicate p-value) 
 

Trial 
t-test with A*= 0.9 t-test with A*= 0.8 
AUCAVG AUCFW AUCAVG AUCFW 

1 
0.8961 
(0.1106) 

0.8963 
(0.1312) 

0.7979 
(0.4516) 

0.7866 
(0.0981) 

2 
0.8866 
(0.1361) 

0.8616 
(0.1000) 

0.7887 
(0.1216) 

0.7748 
(0.1008) 

3 
0.8884 
(0.1227) 

0.8694 
(0.1001) 

0.7905 
( 0.1200) 

0.7819 
(0.1036) 
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