

REVIEW ARTICLE

DATA STORAGE MECHANISMS IN HIVE

*Subash Thota

Data Architect, Crgt, USA

ARTICLE INFO ABSTRACT

The journey of Hadoop and its eco-system is getting more and more efficient to serve better in the Big
Data arena. In this paper, we will explore and experiment the technical capabilities of the latest
Apache Hive version 0.12. One of the key features that attract usto Hive is the data storage
mechanism. In the present situation, we are undergoing a revolution in the way that data is collected.
From the evolution of Big Data, we started sailing deeper into the massive set of complex data, either
structured or unstructured, to perform Business Intelligence and Predictive Analysis. The data storage
mechanism plays akey role in writing, reading and storing the data, effectively.

Copyright © 2018, Subash Thota. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricte d use,
distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Big Data awareness and its growing significance to business
have been reaching fast to a greater range of audience. The
market for data is exploding:

 2.7 zeta bytes of data exist in the digital universe today.
 The Obama administration is investing $200 million in

Big Data research projects.
 IDC estimates that by 2020, business transactions on the

Internet, both for Business-to-Business (B2B) and
business-to-consumer (B2C), will reach 450 billion per
day.

 Facebook stores, accesses and analyzes more than 30
petabytes of user-generated data.

 More than 5 billion people are calling, texting, tweeting
and browsing on mobile phones worldwide.

 Decoding the human genome originally took ten years
to process; now it can be achieved in one week.

To put this in perspective, the production of data is expanding
now at an astonishing pace. Experts point to a 4300 percent
increase in annual data generation by 2020.Big Data solutions
consume volumes of data that are enormous and help detect
very complex patterns that are very difficult to see, without
massive data stores being analyzed. One of the technologies
most often associated with the era of Big Data is Apache
Hadoop, and Apache Hive is the de facto standard for SQL in
Hadoop with more enterprises relying on this open source
roject rather than any other alternative.

*Corresponding author: Subash Thota,
Data Architect, Crgt, USA.

Although there is much technical information on Hadoop, there
is little about how to effectively structure and store data in a
Hadoop environment. As opposed to relational data modeling,
structuring data in the Hadoop Distributed File System (HDFS)
is a relatively new and a constantly evolving domain. Even
though the intrinsic nature of parallel processing and the Map-
reduce algorithm provide an optimal environment for
processing Big Data quickly, the structure of the data itself
plays a vital role. In this paper, we explore the techniques used
for data modeling in Hadoop environment. Specifically, the
experiments described in this paper intend to determine the
best structure and physical modeling technique for storing data
in a Hadoop cluster using Apache Hive 12,to enable efficient
data access.

Although other software also interacts with Hadoop, our
experiments are focused on Apache Hive. Apache Hiveis an
open source data ware housing solution builton top of Hadoop
that manages and queries structured data. I tutilizes Map-
reduce for execution, an RDBMS for its system catalog (called
Hive Meta Store) and HDFS for datastorage. We are mainly
interested in the effective storage of data in HDFS, using Hive,
and the storage file format plays a key role in it. Hive 0.10
supports file formats for storing data -Text File, Sequence File,
RC File and Parquet File, till its release 0.10. But the
introduction ORC file format from Hive 0.11 made a big
change in data storage and retrieval performance. Therefore,
we continue to explore the new features of Apache Hive 0.12
which is the latest version and run some experiments to
interpret the results. In this paper, we concentrate on ORC File-
format, and in future papers, we try to cover the other features

 International Journal of Information Research and Review
Vol. 05, Issue, 05, pp.5463-5466, May, 2018

Article History:

Received 19th February, 2018
Received in revised form
29th March, 2018
Accepted 20th April, 2018
Published online 30th May, 2018

International Journal of Information Research and Review, March, 2018

Keywords:

Big Data Analytics, Social Analytics,
Storage Analytics, Data Management,
Information Quality, Data Mitigation,
Metadata, Data Profiling

of Hive 0.12 such as Hive Query Optimizer, Predicate Push
Down, Vectorized Query execution, and so on.

ORC FILE Format

This diagram illustrates the ORC file structure

 An ORC file contains groups of row data called stripes
 The default stripe size is 250 MB.
 Each stripe consists of - index data, row data, and stripe

footer
 Row data is used in table scans.
 Stripe footer contains a directory of stream locations
 Large stripe sizes enable large, efficient reads from

HDFS. File footer –holds auxiliary information.

Postscript

 Compression parameters
 Size of the compressed footer

An ORC file contains groups of row data called stripes, along
with auxiliary information in a file footer. At the end of the
file, a postscript holds compression parameters and the size of
the compressed footer. The default stripe size is 250 MB. Large
stripe sizes enable large, efficient reads from HDFS. The file
footer contains a list of stripes in the file, the number of rows
per stripe, and each column's data type. It also contains
column-level aggregates count, min, max, and sum.Compared
to RC File format, for example, ORC file format has many
advantages such as:

 Asing lefileas the output of each task, which reduces the
Name Node’sload.

 Hive type support including date time, decimal, and the
 Complex types (struct, list, map, andunion).
 Light -weight indexes stored within the file Skip row

groups that don't pass predicate filtering Seek to a given
row.

 Block-mode compression based on data type run-length
encoding for integer columns dictionary encoding for
string columns.

 Con current reads of the same file using separate Record
Readers.

 Ability to split files without scanning for markers.
 Bound the amount of memory needed for reading or

writing.
 Metadata stored using Protocol Buffers, which allows

addition and removal of fields.

Data Environment

Our main focus is to experiment the Hive storage format and
measure the performance of data compression and data
manipulation process.

Data Storage Experiments

To test the various data storage formats in Hive, we have
identified typical scenarios to measure the performance of Data
storage capabilities and the performance of Data manipulation
process. Following metrics will be used to measure the
performance:

 The data size in HDFS for different storage file-formats
on a table without using compression codec.

 The data size in HDFS for different storage file-formats
on a table using compression codec.

 From the above task measure the time taken to write the
Data into HDFS.

 Perform typical Group by operation to identify the peak
selling day across all the stores and list out the top 10
stores which sold this item.

 Drills down further more to identify the Top 10 selling
stores by revenue.

All these experiments are performed in HDP 2.0 environment;
a Horton works distribution of Hadoop and Apache Hive version
0.12 was used. All the queries we ran in Hive prompt and all
the HQL scripts have been run thrice on a quite environment to
obtain the accurate performance information. We use Snappy
Compression Codec. Wherever compression is required.

EXPERIMENT RESULTS

Interpretation of Results

Experiment 1: Data Compression

From the results, we are able to see the capability of ORC file
format on data compression. The ORC file format helps to
compress data up to the extent of 90% from the actual size.
While comparing ORC compression ratio with RC file-format,
the data was compressed 10 times more than RC-file. The
result of ORC file format was even better when applying the
data compression codec. Also in our experiment, we have
noticed that ORC file-format works very well on huge set of
data instead on a small volume of data. The result clearly
predicts the ability of ORC file format on data compression.

Experiment 2: Data Writing Speed

We have tested this experiment on a retail real time data set of
data volume more than 11GB and we able to see that there was
a better write performance when compared with text file-
format and even with RC file-Format.

 5464 Subash Thota, Data storage mechanisms in hive

From the stats we are able to see 300% faster data ingestion
when compared to Text file-format and the writing speed is
comparable to RC file-format. In the best case scenario, it is up
to 10% faster than RC file-format.

Experiment 3: Data Retrieval Speed

To check the performance of data retrieval we tried with few
business queries. To capture the ideal result, we have executed
the queries thrice.

Without Applying Compression Codec

 H
D

F
S

 S
to

ra
g

e
D

at
a

S
iz

e

File
Format

Flat File
Size

HDFS
Storage Size

Size Ratio
Actual Vs HDFS

Size Compressed
%

TEXT FILE

11.5 GB

11.38 GB

1.01

1.04

RC FILE

11.5 GB

1.2 GB

9.58

89.59

ORC FILE 11.5 GB 0.13 GB 88.46 98.87

Applying Compression Codec

 H
D

F
S

 S
to

ra
g

e
D

at
a

S
iz

e

File
Format

Flat
File Size

HDFS
Storage Size

Size Ratio
Actual Vs HDFS

Size Compressed
%

TEXT FILE

11.5 GB

12.15 GB

0.92

-5.6

RC FILE

11.5 GB

0.16 GB

71.87

98.6

ORC FILE

11.5 GB

0.07 GB

164.28

99.4

Experiment 2: Data writing speed

Without Applying Compression Codec

 W
ri

ti
ng

 S
p

ee
d

File Format Min. Time (Sec) Max. Time (Sec) Average (Sec)

TEXT FILE

1796.73

2585.65

2241.32

RC FILE

684.29

994.27

825.72

ORC FILE

744.51

751.28

747.895

Applying Compression Codec

 W
ri

ti
ng

 S
pe

ed

File Format Min. Time (Sec) Max. Time (Sec) Average (Sec)

TEXT FILE

1225.751

1698.11

1461.93

RC FILE

1028.134

1602.28

1315.207

ORC FILE

997.95

1241.74

1119.845

Experiment 3: Data Reading Speed

Query1: Perform typical Group by operation and JOIN conditions to identify the visit date which made the maximum revenue

across all the stores and list out the top10 stores

 R
ea

d
in

g
S

p
ee

d

File Format Min. Time (Sec) Max. Time (Sec) Average (Sec)

TEXT FILE

295.208

299.35

297.279

RC FILE

259.669

263.451

261.605

ORC FILE

90.47

110.318

100.394

Query 2: Drills down further more to identify the top 10 selling stores by revenue

 R
ea

d
in

g
S

p
ee

d

File Format Min. Time (Sec) Max. Time Sec) Average (Sec)

TEXT FILE

166.362

172.424

169.393

RC FILE

102.294

106.59

104.442

ORC FILE

40.312

43.527

41.919

 5465 International Journal of Information Research and Review, Vol. 05, Issue, 05, pp.5463-5466, May, 2018

Query1

The query in volves GROUP BY operations, In-line view and
JOIN condition store trieve the peak selling date across all
stores. From the stats it was very clear that ORC file-format out
performed when compared with other file-formats. The ORC
file-format was 3times faster than others file formats and this
result was achieved without applying any performance tuning
methods.

Query2

This is very simple query which has GROUP BY operation and
In-line view. The result was slightly different when compared
with query 1and time taken to retrieve the data was little higher.
But the ORC file-Format maintains its data retrieval
performance when compared with other file formats. But we
are able to find some difference in ORC file-format data
retrieval pattern when we join tables which were created using
different file-format. The time taken was almost equal to that as
the RC-file format.

Conclusion

We are into a new arena with massive data sets in different
formats and the data challenge has just got up a smarter notch
in the industry. The Big Data solutions simply consume
volumes of data that are enormous in size, and help to detect
very complex patterns that are very difficult to see, without
massive data stores being analyzed. Through our experiments,
we have shown that the Hive file-format plays a key role in

storing and retrieving the data efficiently, enabling Hive to
support interactive workloads and preserve investments. The
Hive ORC file-format is definitely a game changer for all real-
time clusters and in the case of clusters which are either maxed
out or close to max out this is the only viable option. Future
experiments should consider performance enhancement
provided by Hive 0.12 such as ORC File and Vectorization,
ORC Predicate Push down, Reading ORC file from Map
Reduce using Hcat, and so on. As Big Data technology
continues to advance, the features that are available for
structuring data will continue to improve, and further options
for improving data structures will become available.

REFERENCES

Big Data Analytics with R and Hadoop Vignesh Prajapati,

Packt Publishing, 1st edition, 2013.
Hadoop Beginner's Guide Garry Turkington, Packt Publishing,

2013.
Hadoop For Dummies Dirk deRoos, Paul C. Zikopoulos, Bruce

Brown, Rafael Coss, and Roman B. Melnyk, John Wiley &
Sons, Inc., 1st edition 2014.

hortonworks.com/blog/announcing-apache-hive-0-12.
https://cwiki.apache.org/confluence/display/Hive/LanguageMa

nual+ORC.
Machine Learning with R Brett Lantz, Packt Publishing, 1st

edition, October 2013.
Thota, S. 2017. Big Data Quality. Encyclopedia of Big Data,

pp.1-5. https://link.springer.com/referenceworkentry/10.
1007/978-3-319-32001-4_240-1.

 5466 Subash Thota, Data storage mechanisms in hive
