

RESEARCH ARTICLE

OPTIMIZATION OF SCHEDULING ALGORITHMS FOR LOAD BALANCING USING HYBRID
APPROACH

*Monika Joon and Dr. Neetu Sharma

CSE Department, GITAM, Kablana, Jhajjar, Haryana, MaharashiDayanand University, Rohtak, Haryana, India

ARTICLE INFO ABSTRACT

Nowadays load balancing has become a popular platform for scientific applications. Load balancing
intends to share many number of hardware resources as like equipment’s for record and calculations,
and information and knowledge data for scientific researches over cloud computing. Load balancing
algorithm is one of the most challenging theoretical issues in the computing field. How we can utilize
computing resources very effectively and increase user satisfaction with load balancing system is one
of the calculating service provider’s main issues. Some intensive researches have been done in the
area of load balancing of computing resources. In this research work we have proposed Hybrid
Algorithm in computing. In order to achieve our proposal we will execute this work as the following
steps. First of all, we will declare some task which we want to execute that store in cloud database.
Then, according to the tasks selection, we will select the exegete branch of the function and calculate
the deserved evaluation. A hybrid algorithm is combination of FCFS and Priority concept. Reflection
of the hybrid algorithm about to select local optimum is representing best performance. Compare to
other methods like FCFS, it is found that there is less time consumption in complete execution of
submitted tasks and increases the user satisfaction.

Copyright©2017, Monika Joon and Dr. Neetu Sharma. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Job scheduling is a term in which take some jobs and send
them to the scheduler to execute them. The issue is generated
how efficiently a work can be performed so that less amount of
energy gets occupied. New parallel calculating systems, as like
the SUN Microsystems D10000, the SRC-6, and the SGI
Origin 2000, provide a pool of homogeneous processors, a
bigcommonmemory, compatible I/O connectivity, and
expandable primary and secondary disk storage support.
Everysource in the structure of these systems may be scaled
independently based on cost anduser need. A site which
typically runs processor intensive tasks may option for a
configuration whichis fully populated with CPUs but has a
reduced memory to keep the estimatedprice of these systemsis
less. In the other way, if the estimatedtask mix contains a high
percentage of I/O and memory intensive works, a big memory
configuration may be occupied with high I/O connectivity to
network or storage devices (Masoud Nosrati, 2012). At last, a
combinedtask set may be best serviced by a leveled system
configuration. Therefore, given an expected job mix, a
"common-everything" side by side system can be configured

*Corresponding author: Monika Joon,
CSE Department, GITAM, Kablana, Jhajjar, Haryana,
MaharashiDayanand University, Rohtak, Haryana, India.

with the less number of set of resources needed to occupy the
dissevered performance. The issue, then, is how to schedule
jobs from the actual job stream onto a given machine to occupy
the as hoped performance. This is known as the K-devices
scheduling problem. Consider extending the FCFS-based
schemes to maintainrecord for multiple (K) resources in a
particular physical system configuration. High level FCFS task
allocation method would pack jobs from the job queue into the
system, in order of their arrival, until some system devices was
exhausted. In this case, the job allocation scheme is blocked
from scheduling (Pinky Rosemarry et al., 2012) further tasks
until suitable resources become available for this bigtask. This
potentially results in bigsegment of resources being under-
utilized. The FCFS with backfill probabilistically performs
better by skipping over jobs which block while waiting for
bigportion of a particulardevice and getting smaller tasks which
can develop use of the remaining devices. Still, a single
resource becomes exhausted while others remain under-
utilized. The FCFS-based algorithms are restricted in selecting
jobs based on their general arrival order. In order for a job
allocation scheme to efficiently utilize the independently
locatable resources of the K-resource system, it must be free to
select any job based on matching all of the tasks resource need
with the available system devices. As an example (Neeraj
Kumar and Nirvikar, 2013), consider the JMS state depicted.

 International Journal of Information Research and Review
Vol. 04, Issue, 08, pp.4428-4432, August, 2017

Article History:

Received 14th May, 2017
Received in revised form
19th June, 2017
Accepted 27th July, 2017
Published online 30th August, 2017

International Journal of Information Research and Review, August, 2017

Keywords:

Cloud Computing,
FCFS,
Priority Queue,
Hybrid Approach.

The job allocation scheme must map the six jobs in the job
queue to a two-resource system with 16 CPUs and 32 Bytes of
memory. The CPU and memory requirements of each job are
specified (ArezouMohammadi and Selim). Assume that the
order in the job queue displays the sequence of arrival and that
each job requires the same amount of execution time t.

Preemptive vs non-preemptive scheduling

The Scheduling algorithms can be divided into two categories
with respect to how they deal with clock interrupts.

Non-preemptive Scheduling

A scheduling discipline is non-preemptive if, when a process
has been provided to the CPU; the CPU cannot be put away
from that process (SukumarBabu Bandarupalli1 et al., 2012).

There are some characteristics of non-preemptive balancing
technique

 In non-preemptive system, short jobs are made to wait by

longer jobs but the overall treatment of all processes is fair.
 In non-preemptive system, response times are more

predictable because incoming high priority jobs cannot
displace waiting jobs.

 In non-preemptive scheduling, a scheduler executes jobs in
the following two situations.
a) When a process switches from running state to the

waiting state.
b) When a process terminates.

Preemptive Scheduling

A scheduling discipline is preemptive if, once a process has
been given the CPU can take away. The strategy of allowing
processes that are logically runnable to be temporarily
suspended is called Preemptive Scheduling and it is contrast to
the "run to completion" method.

FCFS (FIRST COME FIRST SERVE)

FCFS stands for “First Come First Serve”. In this algorithm the
first data which reaches to the queue first gets executed first.
This algorithm is time consuming and does not perform quite
efficiently when there is a case of priority in the segmentation.
Other names of this algorithm are:

 First-In-First-Out (FIFO)
 Run-to-Completion
 Run-Until-Done

Perhaps, First-Come-First-Served algorithm is the simplest
scheduling algorithm is the simplest scheduling algorithm.
Processes are dispatched according to their arrival time on the
ready queue. Being a non-preemptive discipline, once a process
has a CPU, it runs to completion. The FCFS scheduling is fair
in the formal sense or human sense of fairness but it is unfair in
the sense that long jobs make short jobs wait and unimportant
jobs make important jobs wait (DeepaliMaste et al., 2013).
FCFS is more predictable than most of other schemes since it
offers time.

FCFS scheme is not useful in scheduling interactive users
because it cannot guarantee good response time. The code for
FCFS scheduling is simple to write and understand. One of the
major drawbacks of this scheme is that the average time is
often quite long.

PRIORITY SCHEDULING ALGORITHM

The shortest-Job-First (SJF) algorithm is a special case of
general priority scheduling algorithm. The basic idea is
straightforward: each process is assigned a priority, and
priority is allowed to run.Equal-Priority processes are
scheduled in FCFS order. An SJF algorithm is simply a priority
algorithm where the priority is the inverse of the (predicted)
next CPU burst. That is, the longer the CPU burst, the lower
the priority and vice versa.Priority can be defined either
internally or externally.Internally defined priorities use some
measurable quantities or qualities to compute priority of a
process.

Examples of Internal priorities are:

 Time limits.
 Memory requirements.
 file requirements,
 For example, number of open files.
 CPU Vs. I/O requirements.

Externally defined priorities are set by criteria that are external
to operating system such as

 The importance of process.
 Type or amount of funds being paid for computer use.
 The department sponsoring the work.
 Politics.

Priority scheduling can be either preemptive or non-preemptive

 A preemptive priority algorithm will preemptive the
CPU if the priority of the newly arrival process is higher
than the priority of the currently running process.

 A non-preemptive priority algorithm will simply put the
new process at the head of the ready queue.

A major problem with priority scheduling is indefinite
blocking or starvation (DeepaliMaste et al., 2013). A solution
to the problem of indefinite blockage of the low-priority
process is aging. Aging is a technique of gradually increasing
the priority of processes that wait in the system for a long
period of time.

OBJECTIVE OF RESEARCH WORK

Our objective includes the following:

 Our first objective is to design a task and scheduler
system

 Our second objective is to design the increasing time
algorithm for scheduling

 Our third objective is to implement a hybrid structure of
FCFS and priority algorithm.

 4429 Monika Joon and Dr. Neetu Sharm, Optimization of scheduling algorithms for load balancing using hybrid approach

RESEARCH METHODOLOGY

Step 1-Data is loaded on Microsoft Excel Sheet that works

backend and accessed by our project.
Step 2- Use frontend .net accesses that data for implementation

of algorithm.
Step 3- FCFS concept applies on data known as increasing

algorithm and get results.
Step 4-For better performance of new algorithm, FCFS concept

is used with priority scheduling.
Step 5- First task execute using concept of increasing method

and then concept of priority applied.
Step 5- All task exclude first task will implement on basis of

priority queue.
Step 6- FCFS and Priority implemented and got results.
Step 7- The result should be better than existing FCFS

algorithm.

FLOWCHART

RESULTS

When execute the code various results are provided. These
results are as following:

Figure 1. A login page when login on this page that will open the
next page this is main page of project

Figure 2. The main page of the system. At this stage project
welcome user for task execution and provide menu to choose
existing options

Figure 3. Window where task will be selected and
priority assigned

When click on the ‘Perform Algo’ button on previous page
then this page open and in this page tasks are selected for the
execution and for FCFS implementation where provide button
with name ‘Increasing Algorithm’. In this page task can easily
select and assign priority to each task. There is need to assign
priority to each task otherwise it takes by default value of
priority that is zero.

Figure 4. Tasks are selected for execution. Assign priority
to each task

In this page tasks are selected for the execution on system.
Now choose Task1, Task5, Task7, Task8, and Task10 with
priority 23, 45, 10, 3, and 67 respectively. Now proceed for
FCFS execution.

 4430 International Journal of Information Research and Review, Vol. 04, Issue, 08, pp.4428-4432, August, 2017

Figure 5. Table shows result of FCFS algorithm

In this table each task execute in a manner of ‘first come first
serve’. Column shows time of execution with waiting time for
each task on available systems. Waiting time for first three
tasks is null because all three systems are free to e
time consume for each task is 508.80 millisecond.

Figure 6. Bar Graph display both execution and waiting time with
different colors for each task

Green: This color represents execution time of task in a system.
Light Green: This color represents waiting time of task in a
system.

Figure 7. Table generated by execution of Hybrid Algorithm

First task will execute on FCFS basis but remaining tasks are
performed on Priority basis. Total execution time is 88.80
milliseconds. This time is very less as compared to FCFS
algorithm.

Green: This color represents execution time of task in a system.
Light Green: This color represents waiting time of task in a
system.

 4431 Monika Joon and Dr. Neetu Sharm, Optimization of scheduling algorithms for load balancing using hybrid approach

FCFS algorithm

In this table each task execute in a manner of ‘first come first
serve’. Column shows time of execution with waiting time for
each task on available systems. Waiting time for first three
tasks is null because all three systems are free to execute. Total
time consume for each task is 508.80 millisecond.

Bar Graph display both execution and waiting time with
different colors for each task

Green: This color represents execution time of task in a system.
epresents waiting time of task in a

Table generated by execution of Hybrid Algorithm

First task will execute on FCFS basis but remaining tasks are
performed on Priority basis. Total execution time is 88.80

very less as compared to FCFS

Green: This color represents execution time of task in a system.
Light Green: This color represents waiting time of task in a

Figure 8. Graph represents execution time
each task

Comparisons between Existing and Proposed Algorithm

Figure 9. Comparative graph of Hybrid and FCFS algorithm

Red Color: This represents execution time of Hybrid
Algorithm

Blue Color: This represents execution time of FCFS Algorithm

Conclusion

It is expected that the time for task execution will be reduced if
there will be implementing the FCFS along with the priority
queue concept. Performance of systems is improved with the
hybrid production using FCFS and priority queue techniques.
In a common way, Configuration of system about hardware is
already allotted but in this research work we develop three
systems as per our need and execute the tasks on these systems.
FCFS and priority concept is failure to provide good
throughput in case of separately ex
method provides us the fast execution and enhances the
throughput performance.

REFERENCES

Arezou Mohammadi and Selim G. Akl,

Algorithms for Real-Time Systems”, School of Computing,
Queen’s University, Canada

DeepaliMaste, LeenaRagha and NileshMarathe,“Intelligent
Dynamic Time Quantum Allocation in MLFQ Scheduling”
International Journal of Information and Computation
Technology, Volume 3, Number 4 2013

Neeraj Kumar, Nirvikar,“Performance
CPU Scheduling Algorithm

Optimization of scheduling algorithms for load balancing using hybrid approach

Graph represents execution time and waiting time for
each task

Comparisons between Existing and Proposed Algorithm

Comparative graph of Hybrid and FCFS algorithm

Red Color: This represents execution time of Hybrid

Blue Color: This represents execution time of FCFS Algorithm

expected that the time for task execution will be reduced if
there will be implementing the FCFS along with the priority
queue concept. Performance of systems is improved with the
hybrid production using FCFS and priority queue techniques.

, Configuration of system about hardware is
already allotted but in this research work we develop three
systems as per our need and execute the tasks on these systems.
FCFS and priority concept is failure to provide good
throughput in case of separately execution. But a hybrid
method provides us the fast execution and enhances the

Mohammadi and Selim G. Akl, “Scheduling
Time Systems”, School of Computing,

Queen’s University, Canada.
e, LeenaRagha and NileshMarathe,“Intelligent

Dynamic Time Quantum Allocation in MLFQ Scheduling”
International Journal of Information and Computation

Volume 3, Number 4 2013.
Neeraj Kumar, Nirvikar,“Performance Improvement Using

CPU Scheduling Algorithm-SRT”, International Journal of

Optimization of scheduling algorithms for load balancing using hybrid approach

Emerging Trends & Technology in Computer Science,
Volume 2, Issue 2, March – April 2013

Pinky Rosemarry, Ravinder Singh, PayalSinghal and
DilipSisodia,“Grouping Based Job Scheduling Algorithm
Using Priority Queue and Hybrid Algorithm In Grid
Computing” International Journal of Grid Computing &
Applications (IJGCA), Vol.3, No.4, December 2012

MasoudNosrati Ronak Karimi Mehdi Hariri, “Task Scheduling
Algorithms Introduction” World Applied Programming,
Vol. (2), Issue (6), June 2012.

SukumarBabu Bandarupalli1, Neelima Priyanka Nutulapati,
Prof. Dr. P. Suresh Varma, “A Novel CPU Scheduling
Algorithm- Preemptive & Non-Preemptive” International
Journal of Modern Engineering Research, Vol.2, Issue.6,
Nov-Dec. 2012

 4432 International Journal of Information Research and Review, Vol. 04, Issue, 08, pp.4428-4432, August, 2017

