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In [Satyanarayana Bhavanari, 2014] the authors Satyanarayana, Srinivasulu and Syam Prasad studied 
1–quasitotal graphs and in [Rajeshkanna et al., 2013] the authors Rajesh kanna, Dharmendr, 
Sridhara and Pradeep kumar studied the concepts ‘degree of a vertex with respect to a given vertex 
set’. Some examples related to 1–quasitotal graphs and the degree of vertices of these graphs with 
respect to a particular given vertex set were presented.  Finally we obtained a theorem whose statement 
is as follows: (i) If A=V(G) and A⊆V(��(�)), then ��(�) = ���(�)(�) for all � ∈ V(G) and ��(�) =

0  for all� ∈	E(�); and (ii) If A=E(G) and  A⊆V(��(�)), then ��(�) = 0 if � ∈ �(�) and ��(�) =  
���(�)(�)  for all � ∈	E(�). Where ��(�)is the 1–quasitotal graph of G and ��(�) is the degree of 

vertex v with respect to the given vertex set A. 
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INTRODUCTION 
 
Let G = (V, E) be a graph consist of a finite non-empty set V of vertices and finite set E of edges such that each edge ek is identified 

as an unordered pair of vertices {vi, vj}, where ,i jv v are called end points of ek. The edge ekis also denoted by either i jv v or i jv v .  

We also write  ,G V E for the graph.  Vertex set and edge set of G are also denoted by  V G  and  E G respectively.  An edge 

associated with a vertex pair {vi, vi} is called a self-loop.  The number of edges associated with the vertex is the degree of the 
vertex, and d(v) denotes the degree of the vertex v.  If there is more than one edge associated with a given pair of vertices, then 
these edges are called parallel edges or multiple edges.  A graph that does not have self-loops or parallel edges is called a simple 
graph.  We consider simple graphs only. 
 
1.1 Definition (Satyanarayana, Srinivasulu, Syam Prasad [Satyanarayana Bhavanari, 2014]): Let G be a graph with vertex set 
V(G) and edge set E(G).   The 1–quasitotal graph, (denoted by Q1(G)) of G is defined as follows: 
 
The vertex set of Q1(G), that is V(Q1(G)) = V(G)  E(G). 
 
Two vertices x, y in V(Q1(G)) are adjacent if they satisfy one of the following conditions: 
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 x, y are in V(G) and xy G.(In other words, �(�) ⊆ ����(�)�) 

 x, y are in E(G) and x, y are incident in G.   

 In other words, {�����	/�, � ∈ �(�)���	���	��������	��	�} ⊆ ����(�)�). 

 

1.2 Note:It is clear that ����(�)� =�(�) ∪ {�����	/�, � ∈ �(�)���	���	��������	��	�}. 
 
1.3 Definition (Rajesh kanna, Dharmendra, Sridhara and Pradeep kumar Rajeshkanna et al., 2013]): Let G be a simple graph and 
A⊆ �(�). The degree of a vertex � ∈V of a graph G with respect to A is the number of vertices of A that are adjacent to �. This 
degree is denoted by	��(�).  The degree of a vertex v in G is denoted by��(�). 
 
For other preliminary results and notations we use [Satyanarayana Bhavanari, 2009], [Satyanarayana Bhavanari, 2009] or 
[Satyanarayana Bhavanari, 2014] 
 
Section-2: Some Examples 
 
2.1 Example:  Consider the graph G given in Fig. 2.1A. 
 
The 1-quasitotal graph Q1(G) of the graph G is given in Fig. 2.1B 
 

 
Fig. 2.1A 

 

 
 

Fig 2.1B 
 

 Suppose � = �(�).  Then 
��(��) = ��(��) = ���(�)(��) = 2; 

��(��) = ��(��) = ���(�)(��) = 2; and 

��(��) = ��(��) = ���(�)(��) = 2; 

So we have that ��(�) = ��(�) = ���(�)(�)  for all � ∈ �(�). 

Suppose � = �(�).  Then ��(�) = 0, ���	��(�) = ���(�)(�) = 2 for all � ∈ �(�). 

 If  � = �(�) ∪ {��}.  Then 
��(��) = ��(��) = ���(�)(��) = 2; 

��(��) = ��(��) = ���(�)(��) = 2; 
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��(��) = ��(��) = ���(�)(��) = 2; 

	��(��) = ��(��) = 0, ���	���(�)(��) = 2; 

	��(��) = 1, ��(��) = 0, ���	���(�)(��) = 2; and 

	��(��) = 1, ��(��) = 0, ���	���(�)(��) = 2. 

 If  � = �(�) ∪ {��}= ���,��,��,		��	�.  Then 

��(��) = 0, ��(��) = ���(�)(��) = 2 

��(��) = 1, ��(��) = ���(�)(��) = 2 

��(��) = 1, ��(��) = ���(�)(��) = 2  

	��(��) = 2, ��(��) = 0, ���	���(�)(�) = 2  

��(��) = 2, ��(��) = 0, ���	���(�)(��) = 2 

��(��) = 2, ��(��) = 0, ���	���(�)(��) = 2 

 
Example: Consider the graph given Fig. 2.2A. 
 
The 1-quasitotal graph Q1(G) of the graph G is given in Fig. 2.2B. 
 
 

 
 

Fig 2.2A 
 

 
 

Fig 2.2B 
 

 Suppose � = �(�).  Then 
 
��(��) = ��(��) = ���(�)(��) = 1; 

��(��) = ��(��) = ���(�)(��) = 3; 

��(��) = ��(��) = ���(�)(��) = 1;and 

��(��) = ��(��) = ���(�)(��) = 1. 

 
So we have that ��(�) = ��(�) = ���(�)(�)  for all � ∈ �(�). 

 

 Suppose � = �(�).  Then ��(�) = 0, ���	��(�) = ���(�)(�) = 2 for all � ∈ �(�). 

 Suppose� = �(�) ∪ {��}.  Then= 
 

��(��) = ��(��) = ���(�)(��) = 1; 

 3792                          International Journal of Information Research and Review, Vol. 04, Issue, 02, pp.3790-3797, February,	2017 
 



��(��) = ��(��) = ���(�)(��) = 3; 

��(��) = ��(��) = ���(�)(��) = 1;  

��(��) = ��(��) = ���(�)(��) = 1; 

��(��) = ��(��) = 0, ���	���(�)(��) = 2; 

	��(��) = 1, ��(��) = 0, ���	���(�)(��) = 2; and 

	��(��) = 1, ��(��) = 0, ���	���(�)(��) = 2. 

 

If  � = �(�) ∪ {��}= ���,��,	��,		��	�. Then 

��(��) = 0, ��(��) = ���(�)(��) = 1; 

��(��) = 1, ��(��) = ���(�)(��) = 3; 

��(��) = 0, ��(��) = ���(�)(��) = 1; 

��(��) = 0, 	��(��) = ���(�)(��) = 1; 

	��(��) = 2, ��(��) = 0, ���	���(�)(�) = 2; 

��(��) = 2, ��(��) = 0, ���	���(�)(��) = 2; and 

��(��) = 2, ��(��) = 0, ���	���(�)(��) = 2. 

 
2.3 Example: Consider the graph given Fig. 2.3A 
 
The 1-quasitotal graph Q1(G) of the graph G is given in Fig. 2.3B 
 

 
 

Fig. 2.3A 

 

 
 

Fig. 2.3B 

Suppose 	� = �(�).  Then 
 
��(��) = ��(��) = ���(�)(��) = 1; 

��(��) = ��(��) = ���(�)(��) = 1; 

��(��) = ��(��) = ���(�)(��) = 4; 

��(��) = ��(��) = ���(�)(��) = 1; and 

��(��) = ��(��) = ���(�)(��) = 1. 

So we have that ��(�) = ��(�) = ���(�)(�)  for all � ∈ �(�). 

 

 Suppose � = �(�). Then ��(�) = 0, ���	��(�) = ���(�)(�)= 3 for all � ∈ �(�). 

 Suppose  � = �(�) ∪ {��}.   
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Then 
 
��(��) = ��(��) = ���(�)(��) = 1; 

��(��) = ��(��) = ���(�)(��) = 1; 

��(��) = ��(��) = ���(�)(��) = 4; 

��(��) = ��(��) = ���(�)(��) = 1; 

��(��) = ��(��) = ���(�)(��) = 1; 

	��(��) = ��(��) = 0, ���	���(�)(��) = 3; 

	��(��) = 1, ��(��) = 0, ���	���(�)(��) = 3; 

	��(��) = 1, ��(��) = 0, ���	���(�)(��) = 3; 

��(��) = 1, ��(��) = 0, ���	���(�)(��) = 3. 

 

 If  � = �(�) ∪ {��}= ���,��,	��,		��	�.   
 
Then 
 
��(��) = 0, ��(��) = ���(�)(��) = 1; 

 
��(��) = 0, ��(��) = ���(�)(��) = 1; 

��(��) = 1, ��(��) = ���(�)(��) = 4; 

��(��) = 0, 	��(��) = ���(�)(��) = 1; 

��(��) = 0, 	��(��) = ���(�)(��) = 1; 

	��(��) = 3, ��(��) = 0, ���	���(�)(��) = 3; 

��(��) = 3, ��(��) = 0, ���	���(�)(��) = 3; 

��(��) = 3, ��(��) = 0, ���	���(�)(��) = 3; and 

��(��) = 3, ��(��) = 0, ���	���(�)(��) = 3. 

 
Example: Consider the graph given Fig. 2.4A. 
 
The 1-quasitotal graph Q1(G) of the graph G is given in Fig. 2.4B. 
 

 v2 

 

Suppose .  Then 

e2 

 = 1; 

e3 

 = 1; 

 = 1; 

 = 5; 

 = 1;and  

 = 1; 
 

So we have that   for all . 
 

Suppose .   

Then  = 4   
 

for all  
 

Suppose  .  Then 

; 

 = 1; 
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 = 1; 

 = 5; 

 = 1; and  

 = 1; 

 = 4; 

 = 4; 

 = 4; 

 = 4; and 

 = 4. 
 

Suppose   =    
 
Then 
 

 = 1; 

 = 1; 

 = 1; 

 = 5; 

 = 1;  

 = 1; 

 = 4; 

 = 4; 

 = 4; 

 = 4; and  

 = 4. 
 
3.A Theorem 
 

3.1Theorem: Suppose A V( ,  

(i)  If A V(G), then  =  for all  V(G) and    for all   E  

(ii) If A E(G), then  if  and  = for all E  
 

Proof: (i) Suppose A V(G).  Let V(G).  Then  
 

 

=  

= ( because . 

=  (since A= V(G)) 
 

Suppose E(G).  Then  
 

 (since A= V(G)). 

= (since there is no edge in  between a vertex of G and an edge of G) 
= 0. 
 

Suppose A (G). 
 

Let V(G).  Since there is no edge (in ) between V(G) and u  V(G) we have that   and so 

. 

Now  =  = (SinceA=E(G)) 
= 0 
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Now suppose E(G). 
 

=  

=  (Since ) 

=  (since ) 

= 0 +  

(since there is no edge in  between an element in V(G) and an element ) 

=  (since A =  

=  
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