

Research Article

SPEECH TO TEXT CONVERSION FOR CHEMICAL ENTITIES

*Farhaan Kaleem, Shruti Kanchan, Pradnya Kalbhor, Aditya Kakde and Sonali Patil

Department of Computer Engineering, Savitribai Phule Pune University, Pune, Maharashtra, India

ARTICLE INFO ABSTRACT

In last many years, work has been done in audio processing. However it was not much used in the
fields of Electronics and Computers due to its variety of speech signals and complexity. But now with
the help of modern algorithms, it is possible to easily recognize the text from the given speech. In this
project, we will develop an application, which will take the speech as input and give the text which
will be specifically related to chemical names. It can also be further extended to provide a base for
various applications like when the text is recognized it can give all the related information of that
chemical. We know that there are applications already developed for audio processing and extracting
text but they do not work that accurately with chemicals. Hence we make this application specially for
chemical entities

Copyright © 2016, Farhaan Kaleem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Speech recognition is the process of capturing spoken
words using microphone or telephone and converting them
into a digitally stored set of words. Speech to text
conversion is one of the application of speech recognition. The
main goal or objective of this paper is how to recognise the
various sound in speech and provide the output as the text.
Accuracy or correctness of speech recognition depends on
various factors such as the size of the vocabulary, mode of
speech like isolated, continuous, etc. To recognise different
voice patterns, a technique based on Hidden Markov Model
(HMM) is used, as it is one of the most efficient algorithm for
speech recognition. Speech recognition system can be divided
into different modules such as: Speech Acquistion, Speech
Preprocessing, Hidden Markov Model and Text Storage.
Finally we can extend this application to extract the chemical
related text from the speech and provide the information about
that chemical entity.

Related Work

There are some speech recognition techniques such as Natural
Language Processing (NLP), etc. The idea from some of the
base papers is used to extract text from the speech. Due to
various reasons like variety of sounds in the speech, it becomes
difficult to recognise the text from the input audio.

*Corresponding author: Farhaan Kaleem,
Department of Computer Engineering, Savitribai Phule Pune
University, Pune, Maharashtra, India

In past, many scientists were doing research on text extraction
from input audio signals. As a result many algorithms were
developed. Natural Language Processing (NLP) techniques can
be used for this process. However these techniques do not work
that effficiently when it comes to the chemical names.
Therefore in this paper, we specifically stress on the chemical
entities. The microphone input port with the audio codec
receives the audio signal and produces the output as the text.

Method to extract Text from input audio signal

Overview

In this paper, the speech is taken as the input through
microphone which is provided to the speech acquistion module.
Then that speech is provided to the speech preprocessing
module.

Fig. 1.1 Architechture of Proposed Method

Speech Acquistion

In this module, the microphone input port with the audio
codec receives the signal, amplifies it, and converts it into

 International Journal of Information Research and Review
Vol. 03, Issue, 05, pp. 2395-2399, May, 2016

Article History:

Received 19th February 2016
Received in revised form
22nd March 2016
Accepted 13th April 2016
Published online 30th May 2016

International Journal of Information Research and Review, May, 2016

Keywords:

Speech-to-text,
Text-to-speech,
Phoneme, Chemicals,
Speech Recognition,
Compounds.

16-bit PCM digital samples at a sampling rate of 8 KHz. Here
the analog audio signal is sampled on time and amplitude axes
for digitisation of audio, so that further processing can be done
on this digitised data. Speech signal is analysed in even interval
which is usually 20ms [2]. Because the speech signal within
this time interval is considered as stable. The final output of
this module will be the digitised audio signal. This data is then
stored in memory for further processing.

Speech Preprocessing

This digitised data is then given to the further module known as
speech preprocessing, which extracts the features of the
digitised audio signal like phonemes, unique patterns, etc.
Preprocessing involves taking the speech samples as input, and
breaking the samples into frames, and returning a unique
pattern for each sample. The unique pattern can be achieved
based on certain basic factors like phonemes.

The unique pattern can be achived by following steps:

 The digital samples are divided into overlapped frames.
 The system checks the frames for voice activity using

endpoint detection and energy threshold calculations.
 The speech samples are passed through a pre-emphasis

filter.
 The frames with voice activity are passed through a

Hamming window. Hamming window returns only positive
sample. It discards negative and zero values.

 The system finds linear predictive coding (LPC)
coefficients for frames.

 From the LPC coefficients, the system determines the
cepstral coefficients.

The cepstral coefficients serve as feature vectors.

We know that the frequency of speech of humans lies within
specific range. An adult male will have a fundamental
frequency from 85 to 180 Hz, and that of a typical adult female
from 165 to 255 Hz. Thus pre-emphasis filter is used to extract
only that audio, which lies in this frequency range. Linear
predictive coding (LPC) is a tool used mostly inaudio signal
processing and speech processing for representing the spectral
envelope of a digital signal of speech in compressed form,
using the information of a linear predictive model.

Fig. 2. State Transtion diagram

CMUSphinx toolkit

CMUSphinx toolkit is a leading speech recognition toolkit with
various tools used to build speech applications. CMU Sphinx
toolkit has a number of packages for different tasks and

applications. It’s sometimes confusing what to choose. To
cleanup, here is the list:

 Pocketsphinx — lightweight recognizer library written in C.
 Sphinxbase — support library required by Pocketsphinx
 Sphinx4 — adjustable, modifiable recognizer written in

Java
 Sphinxtrain — acoustic model training tools

Speech recognition using Sphinx toolkit consists basically of
four steps:

 Building the dictionary
 Building the language model
 Adapting or building acoustic model
 Tuning the performance

Building the dictionary

There are various tools to help you to extend an existing
dictionary for new words or to build a new dictionary from
scratch. If your language already has a dictionary it's
recommended to use since it's carefully tuned for best
performance. If you starting a new language you need to
account for various reductions and coarticulations effects. They
make it very hard to create accurate rules to convert text to
sounds. However, the practice shows that even naive
conversion could produce a good results for speech recognition.
For most of the languages you need to use specialized
grapheme to phoneme (g2p) code to do the conversion using
machine learning methods and existing small database.
Nowdays most accurate g2p tools are Phonetisaurus:
http://code.google.com/p/phonetisaurus. If TTS is used, you
often need to do phoneset conversion. TTS phonesets are
usually more extensive than required for ASR. However, there
is a great adavantage in TTS tools because they usually contain
more required functionality than simple G2P. For example,
they are doing tokenization by converting numbers and
abbreviations to spoken format. For English you can use
simplier capabilities by using on-line webservice:
http://www.speech.cs.cmu.edu/tools/lmtool.html

Building the language model

There are several types of models that describe language to
recognize - keyword lists, grammars and statistical language
models, phonetic statistical language models. You can chose
any decoding mode according to your needs and you can even
switch between modes in runtime.

Keywords-List

Pocketsphinx supports keyword spotting mode where you can
specify the keyword list to look for. The advantage of this
mode is that you can specify a threshold for each keyword so
that keyword can be detected in continuous speech. All other
modes will try to detect the words from grammar even if you
used words which are not in grammar. Threshold must be
specified for every keyphrase. For shorter keyphrase you can
use smaller thresholds like 1e-1, for longer threshold must be
bigger, up to 1e-50. If your keyphrase is very long, larger than
10 syllables, it is recommended to split it and spot for parts
separately. Threshold must be tuned to balance between false

2396 Farhaan Kaleem et al. Speech to text conversion for chemical entities

alarms and missed detections, the best way to tune threshold is
to use a prerecorded audio file.

Tuning process is the following:

 Take a long recording with few occurrences of your

keywords and some other sounds. You can take a movie
sound or something else. The length of the audio should be
approximately 1 hour

 Run keyword spotting on that file with different thresholds
for every keyword, use the following command:
pocketsphinx_continuous -infile <your_file.wav> -
keyphrase <"your keyphrase"> -kws_threshold \
<your_threshold> -time yes

 From keyword spotting results count how many false alarms
and missed detections you've encountered

 Select the threshold with smallest amount of false alarms
and missed detections

Grammars

Grammars describe very simple type of the language for
command and control, and they are usually written by hand or
generated automatically within the code. Grammars usually do
not have probabilities for word sequences, but some elements
might be weighed. Grammars could be created with JSGF
format and usually have extension like .gram or .jsgf.

Language Models

Statistical language models describe more complex language.
They contain probabilities of the words and word combinations.
Those probabilities are estimated from a sample data and
automatically have some flexibility. For example, every
combination from the vocabulary is possible, though
probability of such combination might vary. For example if you
create statistical language model from a list of words it will still
allow to decode word combinations though it might not be your
intent. Overall, statistical language models are recommended
for free-form input where user could say anything in a natural
language and they require way less engineering effort than
grammars, you just list the possible sentences. Overall, modern
speech recognition interfaces tend to be more natural and avoid
command-and-control style of previous generation. For that
reason most interface designers prefer natural language
recognition with statistical language model than old-fashioned
VXML grammars.

Adapting or building acoustic model

There are, however, applications where the current models
won't work. For example, handwriting recognition or dictation
support for another language. In these cases, you will need to
train your own model and this tutorial will show you how to do
that for the CMUSphinx speech recognition engine. Before
starting with training make sure you are familar with concepts,
prepared the language model and you indeed need to train the
model and have resources to do that.

Data Preparation

The trainer learns the parameters of the models of the sound
units using a set of sample speech signals. This is called a

training database. A choice of already trained databases will
also be provided to you. The database contains information
required to extract statistics from the speech in form of the
acoustic model. Database should have enough speakers
recording, variety of recording conditions, enough acoustic
variations and all possible linguistic sentences. The size of the
database depends on the complexity of the task you want to
handle as mentioned above. A Database should have the two
parts mentioned above - training part and test part. Usually test
part is about 1/10th of the full data size, but we don't
recommend you to have test data more than 4 hours of
recordings. You have to design database prompts and
postprocess the results to ensure that audio actually corresponds
to prompts. The file structure for the database is: etc

 your_db.dic - Phonetic dictionary
 your_db.phone - Phoneset file
 your_db.lm.DMP - Language model
 your_db.filler - List of fillers
 your_db_train.fileids - List of files for training
 your_db_train.transcription - Transcription for training
 your_db_test.fileids - List of files for testing
 your_db_test.transcription - Transcription for testing
 wav
 speaker_1
 file_1.wav - Recording of speech utterance
 speaker_2
 file_2.wav

It's critical to have audio files in a specific format. Sphinxtrain
does support some variety of sample rates but by default it's
configured to train from 16khz 16bit mono files in MS WAV
format. YOU NEED TO MAKE SURE THAT YOU
RECORDINGS ARE AT A SAMPLING RATE OF 16 KHZ
(or 8 kHz if you train a telephone model) IN MONO WITH
SINGLE CHANNEL.

Adapting the default acoustic model

The adaptation process takes transcribed data and improves the
model you already have. It's more robust than training and
could lead to a good results even if your adaptation data is
small. For example, it's enough to have 5 minutes of speech to
significantly improve the dictation accuracy by adaptation to
the particular speaker.

Required Files

The actual set of sentences you use is somewhat arbitrary, but
ideally it should have good coverage of the most frequently
used words or phonemes in the set of sentences or the type of
text you want to recognize. For example, if you want to
recognize isolated commands, you need tor record them. If you
want to recognize dictation, you need to record full sentences.
For simple voice adaptation we have had good results simply
using sentences from the CMU ARCTIC text-to-speech
databases. To that effect, here are the first 20 sentences from
ARCTIC, a fileids file, and a transcription file

 arctic20.fileids
 arctic20.transcription

2397 International Journal of Information Research and Review Vol. 03, Issue, 05, pp. 2395-2399, May, 2016

Adapting the acoustic model

First we will copy the default acoustic model from
PocketSphinx into the current directory in order to work on it.
Assuming that you installed PocketSphinx under /usr/local, the
acoustic model directory is /usr/local/share/pocketsphinx/
model/en-us/en-us. Copy this directory to your working
directory: cp -a /usr/local/share/pocketsphinx/model/en-us/en-
us.

Generating acoustic feature files

In order to run the adaptation tools, you must generate a set of
acoustic model feature files from these WAV audio recordings.
This can be done with the sphinx_fe tool from SphinxBase. It is
imperative that you make sure you are using the same acoustic
parameters to extract these features as were used to train the
standard acoustic model. Since PocketSphinx 0.4, these are
stored in a file called feat.params in the acoustic model
directory. You can simply add it to the command line for
sphinx_fe, like this:

sphinx_fe -argfile en-us/feat.params \
 -samprate 16000 -c arctic20.fileids \
 -di . -do . -ei wav -eo mfc -mswav yes

Tuning the performance

Speech recognition accuracy is not always great.

The first thing you need to understand if your accuracy just
lower than expected or very low. If it's very low most likely
you misconfigured the decoder. If it's lower than expected, you
can apply various ways to improve it. The first thing you
should do is to collect a database of test samples and measure
the recognition accuracy. You need to dump utterances into
wav files, write reference text and use decoder to decode it.
Then calculate WER using the word_align.pl tool from
Sphinxtrain. Test database size depends on the accuracy but
usually it's enough to have 30 minutes of transcribed audio to
test recognizer accuracy reliably.

Test Database setup

To test the recognition you need to configure the decoding with
the required paramters, in particular, you need to have a
language model <your.lm>. Create fileids file test.fileids.
Create transcription file test.transcription. Put the audio files in
wav folder. Make sure those files have proper format and
sample rate.

Now run the decoder:

pocketsphinx_batch \
 -adcin yes \
 -cepdir wav \
 -cepext .wav \
 -ctl test.fileids \
 -lm <your.lm, for example en-us.lm.dmp from pocketsphinx> \
 -dict <your.dic, for example cmudict-en-us.dict from
pocketsphinx> \
 -hmm <your_hmm, for example en-us> \
 -hyp test.hyp

word_align.pl test.transcription test.hyp

word_align.pl script is a part of sphinxtrain distribution

Make sure to add -samprate 8000 to the above command if you
are decoding 8kHz files! The script word-align.pl from
Sphinxtrain will report you the exact error rate which you can
use to decide if adaptation worked.

Mathematical Model

Let us consider a set S = { I, O, Fn, Su, F }
Where,
I => Input
I = {Audio or Speech}
O => Output
O = {Text which is extracted from the audio signal}
Su => Success
Su = {Proper word or sentence which is spoken is obtained}
F => Failure
F = {Unable to extract the patterns from the input audio signal
and thus failure in giving the correct word as output in the form
of text}
Fn => Functions
Fn = {speechAcquistion(), formFrames() }

speechAcquistion()
{
This function takes the audio signal as the input and using Pulse
Codde Modulation can encode the input audio into 16-bit
encoded data.
}
formFrames()
{
This function is used to form the input encoded audio signals
into frames of size 960.
short pcm_[960];
}

Preprocessing()
{
It is used to extract the feature vector in the form of ceptral
coeffecients
}

HiddenMarcov()
{
It is used to compare the words by using probability
distribution and give the desired text as the output.
}

Conclusions

Therefore we conclude that Hidden Marcov Model (HMM) can
be used to efficiently extract the text from the input audio. It is
used to recognize the speech and thus give an output in textual
format. The older techniques, were not able to efficiently
extract chemical names. But HMM can efficiently extract the
chemical names. And give the desired text as an output.

REFERENCES

Raghavendhar Reddy, B. and E. Mahender, Speech to Text

Conversion using Android Platform. January -February
2013, Parvathapur, Uppal, Hyderabad, India.

2398 Farhaan Kaleem et al. Speech to text conversion for chemical entities

MJF Gales. Semi-tied full-covariance matrices for hidden
Markov models. 1997.

Hermansky, H. 1990. Perceptual linear predictive (PLP)
analysis of speech. Journal of the Acoustical Society of
America, 87(4):1738{1752.

Harb, B., Chelba, C., Dean, J. and G. Ghemawhat. 2009. Back-
o_ Language Model Compression.

 Maryam Kamvar and Shumeet Baluja. A large scale study of
wireless search behavior: Google mobile search. In CHI,
pages 701{709, 2006.

Wikipedia

2399 International Journal of Information Research and Review Vol. 03, Issue, 05, pp. 2395-2399, May, 2016

