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ARTICLE INFO                                         ABSTRACT 
 

 
 

In last many years, work has been done in audio processing. However it was not much used in the 
fields of Electronics and Computers due to its variety of speech signals and complexity. But now with 
the help of modern algorithms, it is possible to easily recognize the text from the given speech. In this 
project, we will develop an application, which will take the speech as input and give the text which 
will be specifically related to chemical names. It can also be further extended to provide a base for 
various applications like when the text is recognized it can give all the related information of that 
chemical. We know that there are applications already developed for audio processing and extracting 
text but they do not work that accurately with chemicals. Hence we make this application specially for 
chemical entities 
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INTRODUCTION 
 

Speech recognition is  the  process  of  capturing  spoken  
words  using microphone  or  telephone  and  converting  them  
into  a  digitally  stored  set  of words. Speech to text 
conversion is one of the application of speech recognition. The 
main goal or objective of this paper is how to recognise the 
various sound in speech and provide the output as the text. 
Accuracy or correctness of speech recognition depends on 
various factors such as the size of the vocabulary, mode of 
speech like isolated, continuous, etc. To recognise different 
voice patterns, a technique based on Hidden Markov Model 
(HMM) is used, as it is one of the most efficient algorithm for 
speech recognition. Speech recognition system can be divided 
into different modules such as: Speech Acquistion, Speech 
Preprocessing, Hidden Markov Model and Text Storage. 
Finally we can extend this application to extract the chemical 
related text from the speech and provide the information about 
that chemical entity. 
 

Related Work 
 

There are some speech recognition techniques such as Natural 
Language Processing (NLP), etc. The idea from some of the 
base papers is used to extract text from the speech. Due to 
various reasons like variety of sounds in the speech, it becomes 
difficult to recognise the text from the input audio. 
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In past, many scientists were doing research on text extraction 
from input audio signals. As a result many algorithms were 
developed. Natural Language Processing (NLP) techniques can 
be used for this process. However these techniques do not work 
that effficiently when it comes to the chemical names. 
Therefore in this paper, we specifically stress on the chemical 
entities. The microphone input port with the audio codec 
receives the audio signal and produces the output as the text. 
 

Method to extract Text from input audio signal 
 

Overview 
 

In this paper, the speech is taken as the input through 
microphone which is provided to the speech acquistion module. 
Then that speech is provided to the speech preprocessing 
module.  
 

 
 

Fig. 1.1 Architechture of Proposed Method 
 

Speech Acquistion 
 

In this module, the  microphone  input  port  with the  audio  
codec  receives  the  signal,  amplifies  it, and converts it into 
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16-bit PCM digital samples at a sampling rate of 8 KHz. Here 
the analog audio signal is sampled on time and amplitude axes 
for digitisation of audio, so that further processing can be done 
on this digitised data. Speech signal is analysed in even interval 
which is usually 20ms [2]. Because the speech signal within 
this time interval is considered as stable. The final output of 
this module will be the digitised audio signal. This data is then 
stored in memory for further processing. 
 

Speech Preprocessing 
 
This digitised data is then given to the further module known as 
speech preprocessing, which extracts the features of the 
digitised audio signal like phonemes, unique patterns, etc. 
Preprocessing involves taking the speech samples as input, and 
breaking the samples into frames, and returning a unique 
pattern for each sample. The unique pattern can be achieved 
based on certain basic factors like phonemes. 
 
The unique pattern can be achived by following steps: 
 

 The digital samples are divided into overlapped frames. 
 The system checks the frames for voice activity using 

endpoint detection and energy threshold calculations. 
 The speech samples are passed through a pre-emphasis 

filter.  
 The frames with voice activity are passed through a 

Hamming window. Hamming window returns only positive 
sample. It discards negative and zero values. 

 The system finds linear predictive coding (LPC) 
coefficients for frames. 

 From the LPC coefficients, the system determines the 
cepstral coefficients.  

 
The cepstral coefficients serve as feature vectors. 
 
We know that the frequency of speech of humans lies within 
specific range. An adult male will have a fundamental 
frequency from 85 to 180 Hz, and that of a typical adult female 
from 165 to 255 Hz. Thus pre-emphasis filter is used to extract 
only that audio, which lies in this frequency range. Linear 
predictive coding (LPC) is a tool used mostly inaudio signal 
processing and speech processing for representing the spectral 
envelope of a digital signal of speech in compressed form, 
using the information of a linear predictive model. 
 

 
 

Fig. 2. State Transtion diagram 
 

CMUSphinx toolkit 
 

CMUSphinx toolkit is a leading speech recognition toolkit with 
various tools used to build speech applications. CMU Sphinx 
toolkit has a number of packages for different tasks and 

applications. It’s sometimes confusing what to choose. To 
cleanup, here is the list:  
 
 Pocketsphinx — lightweight recognizer library written in C. 
 Sphinxbase — support library required by Pocketsphinx 
 Sphinx4 — adjustable, modifiable recognizer written in 

Java 
 Sphinxtrain — acoustic model training tools 
 
Speech recognition using Sphinx toolkit  consists basically of 
four steps: 
 
 Building the dictionary 
 Building the language model 
 Adapting or building acoustic model 
 Tuning the performance 
 
Building the dictionary 
 
There are various tools to help you to extend an existing 
dictionary for new words or to build a new dictionary from 
scratch. If your language already has a dictionary it's 
recommended to use since it's carefully tuned for best 
performance. If you starting a new language you need to 
account for various reductions and coarticulations effects. They 
make it very hard to create accurate rules to convert text to 
sounds. However, the practice shows that even naive 
conversion could produce a good results for speech recognition.  
For most of the languages you need to use specialized 
grapheme to phoneme (g2p) code to do the conversion using 
machine learning methods and existing small database. 
Nowdays most accurate g2p tools are Phonetisaurus: 
http://code.google.com/p/phonetisaurus. If TTS is used, you 
often need to do phoneset conversion. TTS phonesets are 
usually more extensive than required for ASR. However, there 
is a great adavantage in TTS tools because they usually contain 
more required functionality than simple G2P. For example, 
they are doing tokenization by converting numbers and 
abbreviations to spoken format. For English you can use 
simplier capabilities by using on-line webservice: 
http://www.speech.cs.cmu.edu/tools/lmtool.html 
 
Building the language model 
 
There are several types of models that describe language to 
recognize - keyword lists, grammars and statistical language 
models, phonetic statistical language models. You can chose 
any decoding mode according to your needs and you can even 
switch between modes in runtime. 
 
Keywords-List 
 
Pocketsphinx supports keyword spotting mode where you can 
specify the keyword list to look for. The advantage of this 
mode is that you can specify a threshold for each keyword so 
that keyword can be detected in continuous speech. All other 
modes will try to detect the words from grammar even if you 
used words which are not in grammar. Threshold must be 
specified for every keyphrase. For shorter keyphrase you can 
use smaller thresholds like 1e-1, for longer threshold must be 
bigger, up to 1e-50. If your keyphrase is very long, larger than 
10 syllables, it is recommended to split it and spot for parts 
separately. Threshold must be tuned to balance between false 
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alarms and missed detections, the best way to tune threshold is 
to use a prerecorded audio file.  
 
Tuning process is the following:  
 
 Take a long recording with few occurrences of your 

keywords and some other sounds. You can take a movie 
sound or something else. The length of the audio should be 
approximately 1 hour 

 Run keyword spotting on that file with different thresholds 
for every keyword, use the following command:  
pocketsphinx_continuous -infile <your_file.wav> -
keyphrase <"your keyphrase"> -kws_threshold \  
<your_threshold> -time yes 

 From keyword spotting results count how many false alarms 
and missed detections you've encountered 

 Select the threshold with smallest amount of false alarms 
and missed detections 
 

Grammars 
 

Grammars describe very simple type of the language for 
command and control, and they are usually written by hand or 
generated automatically within the code. Grammars usually do 
not have probabilities for word sequences, but some elements 
might be weighed. Grammars could be created with JSGF 
format and usually have extension like .gram or .jsgf.  
 
Language Models 
 
Statistical language models describe more complex language. 
They contain probabilities of the words and word combinations. 
Those probabilities are estimated from a sample data and 
automatically have some flexibility. For example, every 
combination from the vocabulary is possible, though 
probability of such combination might vary. For example if you 
create statistical language model from a list of words it will still 
allow to decode word combinations though it might not be your 
intent. Overall, statistical language models are recommended 
for free-form input where user could say anything in a natural 
language and they require way less engineering effort than 
grammars, you just list the possible sentences. Overall, modern 
speech recognition interfaces tend to be more natural and avoid 
command-and-control style of previous generation. For that 
reason most interface designers prefer natural language 
recognition with statistical language model than old-fashioned 
VXML grammars.  
 
Adapting or building acoustic model 
 
There are, however, applications where the current models 
won't work. For example, handwriting recognition or dictation 
support for another language. In these cases, you will need to 
train your own model and this tutorial will show you how to do 
that for the CMUSphinx speech recognition engine. Before 
starting with training make sure you are familar with concepts, 
prepared the language model and you indeed need to train the 
model and have resources to do that.  
 

Data Preparation 
 
The trainer learns the parameters of the models of the sound 
units using a set of sample speech signals. This is called a 

training database. A choice of already trained databases will 
also be provided to you. The database contains information 
required to extract statistics from the speech in form of the 
acoustic model. Database should have enough speakers 
recording, variety of recording conditions, enough acoustic 
variations and all possible linguistic sentences. The size of the 
database depends on the complexity of the task you want to 
handle as mentioned above. A Database should have the two 
parts mentioned above - training part and test part. Usually test 
part is about 1/10th of the full data size, but we don't 
recommend you to have test data more than 4 hours of 
recordings. You have to design database prompts and 
postprocess the results to ensure that audio actually corresponds 
to prompts. The file structure for the database is: etc 
 
 your_db.dic - Phonetic dictionary 
 your_db.phone - Phoneset file 
 your_db.lm.DMP - Language model 
 your_db.filler - List of fillers 
 your_db_train.fileids - List of files for training 
 your_db_train.transcription - Transcription for training 
 your_db_test.fileids - List of files for testing 
 your_db_test.transcription - Transcription for testing 
 wav 
 speaker_1 
 file_1.wav - Recording of speech utterance 
 speaker_2 
 file_2.wav 
 
It's critical to have audio files in a specific format. Sphinxtrain 
does support some variety of sample rates but by default it's 
configured to train from 16khz 16bit mono files in MS WAV 
format. YOU NEED TO MAKE SURE THAT YOU 
RECORDINGS ARE AT A SAMPLING RATE OF 16 KHZ 
(or 8 kHz if you train a telephone model) IN MONO WITH 
SINGLE CHANNEL. 
 

Adapting the default acoustic model 
 

The adaptation process takes transcribed data and improves the 
model you already have. It's more robust than training and 
could lead to a good results even if your adaptation data is 
small. For example, it's enough to have 5 minutes of speech to 
significantly improve the dictation accuracy by adaptation to 
the particular speaker.  
 
Required Files 
 
The actual set of sentences you use is somewhat arbitrary, but 
ideally it should have good coverage of the most frequently 
used words or phonemes in the set of sentences or the type of 
text you want to recognize. For example, if you want to 
recognize isolated commands, you need tor record them. If you 
want to recognize dictation, you need to record full sentences. 
For simple voice adaptation we have had good results simply 
using sentences from the CMU ARCTIC text-to-speech 
databases. To that effect, here are the first 20 sentences from 
ARCTIC, a fileids file, and a transcription file  
 
 arctic20.fileids 
 arctic20.transcription 
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Adapting the acoustic model 
 

First we will copy the default acoustic model from 
PocketSphinx into the current directory in order to work on it. 
Assuming that you installed PocketSphinx under /usr/local, the 
acoustic model directory is /usr/local/share/pocketsphinx/ 
model/en-us/en-us. Copy this directory to your working 
directory: cp -a /usr/local/share/pocketsphinx/model/en-us/en-
us. 
 

Generating acoustic feature files 
 

In order to run the adaptation tools, you must generate a set of 
acoustic model feature files from these WAV audio recordings. 
This can be done with the sphinx_fe tool from SphinxBase. It is 
imperative that you make sure you are using the same acoustic 
parameters to extract these features as were used to train the 
standard acoustic model. Since PocketSphinx 0.4, these are 
stored in a file called feat.params in the acoustic model 
directory. You can simply add it to the command line for 
sphinx_fe, like this:  
 
sphinx_fe -argfile en-us/feat.params \ 
        -samprate 16000 -c arctic20.fileids \ 
       -di . -do . -ei wav -eo mfc -mswav yes 
 

Tuning the performance 
 

Speech recognition accuracy is not always great.  
 

The first thing you need to understand if your accuracy just 
lower than expected or very low. If it's very low most likely 
you misconfigured the decoder. If it's lower than expected, you 
can apply various ways to improve it. The first thing you 
should do is to collect a database of test samples and measure 
the recognition accuracy. You need to dump utterances into 
wav files, write reference text and use decoder to decode it. 
Then calculate WER using the word_align.pl tool from 
Sphinxtrain. Test database size depends on the accuracy but 
usually it's enough to have 30 minutes of transcribed audio to 
test recognizer accuracy reliably.  
 

Test Database setup 
 

To test the recognition you need to configure the decoding with 
the required paramters, in particular, you need to have a 
language model <your.lm>. Create fileids file test.fileids. 
Create transcription file test.transcription. Put the audio files in 
wav folder. Make sure those files have proper format and 
sample rate. 
 
Now run the decoder: 
 

pocketsphinx_batch \ 
 -adcin yes \ 
 -cepdir wav \ 
 -cepext .wav \ 
 -ctl test.fileids \ 
 -lm <your.lm, for example en-us.lm.dmp from pocketsphinx> \ 
 -dict <your.dic, for example cmudict-en-us.dict from 
pocketsphinx> \ 
 -hmm <your_hmm, for example en-us> \ 
 -hyp test.hyp 
 

word_align.pl test.transcription test.hyp 

word_align.pl script is a part of sphinxtrain distribution  
 
Make sure to add -samprate 8000 to the above command if you 
are decoding 8kHz files! The script word-align.pl from 
Sphinxtrain will report you the exact error rate which you can 
use to decide if adaptation worked. 
 

Mathematical Model  
 

Let us consider a set S = { I, O, Fn, Su, F } 
Where, 
I => Input 
I = {Audio or Speech} 
O => Output 
O = {Text which is extracted from the audio signal} 
Su => Success 
Su = {Proper word or sentence which is spoken is obtained} 
F => Failure 
F = {Unable to extract the patterns from the input audio signal 
and thus failure in giving the correct word as output in the form 
of text} 
Fn => Functions 
Fn = {speechAcquistion(), formFrames() } 
 
speechAcquistion() 
{ 
This function takes the audio signal as the input and using Pulse 
Codde Modulation can encode the input audio into 16-bit 
encoded data. 
} 
formFrames() 
{ 
This function is used to form the input encoded audio signals 
into frames of size 960. 
short pcm_[960]; 
} 
 
Preprocessing() 
{ 
It is used to extract the feature vector in the form of ceptral 
coeffecients 
} 
 
HiddenMarcov() 
{ 
It is used to compare the words by using probability 
distribution and give the desired text as the output. 
} 
 
Conclusions 
 
Therefore we conclude that Hidden Marcov Model (HMM) can 
be used to efficiently extract the text from the input audio. It is 
used to recognize the speech and thus give an output in textual 
format. The older techniques, were not able to efficiently 
extract chemical names. But HMM can efficiently extract the 
chemical names. And give the desired text as an output. 
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