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The general method which has been widely used for computation of Uncertainty of measurement is 
law of propagation method as discussed in Guide for Uncertainty of Measurement (GUM). Numbers 
of other new methods, with the time, have been evolved for the assessment of Uncertainty of 
measurement. Among those methods, Monte Carlo Method, now has been given the most emphasis 
and has been recommended by JCGM wide its supplement for Uncertainty of measurement. This 
paper is an attempt to discuss briefly, the procedure and role of Monte Carlo Method technique in 
Uncertainty of measurement. 
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INTRODUCTION 
 

The objective of a measurement is to establish the value of the 
measurand, that is, the value of particular quantity to be 
measured. A measurement thus begins with a suitable 
specification of the measurand, the process of measurement, 
and the measurement method. The concept of uncertainty is a 
perceptible trait in the history of measurement. The concept of 
uncertainty as a quantifiable trait is relatively new in the history 
of measurement, although error and analysis of error have long 
been a part of the practice of metrology, it is now broadly 
renowned that, when all of the identified or alleged components 
of error have been evaluated and the suitable corrections have 
been applied, there still leftover an uncertainty about the 
correctness of the stated result, that is, a doubt about how well 
the result of the measurement represents the value of the 
quantity being measured. 
 

Uncertainty 
 

Definition 
 

The word “uncertainty” means doubt, and thus in its broadest 
sense “uncertainty of measurement” means doubt about the 
validity of the result of a measurement, because of the lack of 
different words for this general concept of uncertainty and the 
specific quantities that provide quantitative measures of the 
concept. 
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For every measurement - even the most careful - there is always 
a margin of doubt. The uncertainty of measurement result 
denotes the lack of exact information of the value of the 
measurand. Still, after correction for recognized systematic 
effects, the result of measurement is only an approximation the 
value of the measurand because there are some random effects 
and imperfect correction of the result of measurement arise 
uncertainty. Some of these random components that comprises 
uncertainty of measurement may be evaluated from the 
statistical distribution of the results of series of measurements 
and can be characterized by experimental standard deviations 
and other components are evaluated from assumed probability 
distributions based on experience or other information and also 
can be characterized by standard deviations. 
 
Possible Sources of Uncertainty 
 
o Incomplete definition of the measurand; 
o Imperfect realization of the definition of the measurand; 
o Non representative sampling — the sample measured may 

not represent the defined measurand; 
o Inadequate knowledge of the effects of environmental 

conditions on the measurement or imperfect measurement 
of environmental conditions; 

o Personal bias in reading analogue instruments; 
o Finite instrument resolution or discrimination threshold; 
o Inexact values of measurement standards and reference 

materials; 
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o Inexact values of constants and other parameters obtained 
from external sources and used in the data-reduction 
algorithm; 

o Approximations and assumptions incorporated in the 
measurement method and procedure; 

o Variations in repeated observations of the measurand under 
apparently identical conditions. 

o These sources are not necessarily independent, and some of 
sources (a) to (i) may contribute to source (j). Of course, an 
unrecognized systematic effect cannot be taken into account 
in the evaluation of the uncertainty of the result of a 
measurement but contributes to its error. 

 

LPU Method for Uncertainty evaluation  
 
The LPU (GUM) method is not magic. Its application will not 
produce accurate estimates of measurement uncertainty from 
bad tests or poor research. What the GUM does provide is a 
consistent method for estimating measurement uncertainties. 
These words from that document summarize the situation well:  
Although this Guide provides a framework for assessing 
uncertainty, it cannot substitute for critical thinking, intellectual 
honesty and professional skill. The evaluation of uncertainty is 
neither a routine task nor a purely mathematical one; it depends 
on detailed knowledge of the nature of the measurand and of 
the measurement. The quality and utility of the uncertainty 
quoted for the result of a measurement therefore ultimately 
depend on the understanding, critical analysis, and integrity of 
those who contribute to the assignment of its value. The area of 
a square piece of material is calculated from two input 
quantities, length and width. These quantities may be affected 
by influence quantities such as temperature and the resolution 
of the measuring instrument 
 
Steps involved in LPU Method: 
 
 Express mathematically the relationship between the 

measurand Y and the input quantities Xi on which Y 
depends: Y = f (X1, X2, ..., XN). The function f should contain 
every quantity, including all corrections and correction 
factors that can contribute a significant component of 
uncertainty to the result of the measurement. 

 Determine xi, the estimated value of input quantity Xi, either 
on the basis of the statistical analysis of series of 
observations or by other means. 

  Evaluate the standard uncertainty U (xi) of each input 
estimate xi. For an input estimate obtained from the 
statistical analysis of series of observations. 

  Evaluate the covariance associated with any input estimates 
that are correlated. 

 Calculate the result of the measurement, that is, the estimate 
y of the measurand Y, from the functional relationship f 
using for the input quantities Xi the estimates xi obtained in 
step 2. 

 Determine the combined standard uncertainty Uc(y) of the 
measurement result y from the standard uncertainties and 
covariance associated with the input estimates. If the 
measurement determines simultaneously more than one 
output quantity, calculate their covariance. 

  If it is necessary to give an expanded uncertainty U, whose 
purpose is to provide an interval y − U to y + U that may be 
expected to encompass a large fraction of the distribution of 
values that could reasonably be attributed to the measurand 

Y, multiply the combined standard uncertainty U�(y) by a 
coverage factor k, typically in the range 2 to 3, to obtain U 
= kUc(y). Select k on the basis of the level of confidence 
required of the interval. 

 Report the result of the measurement y together with its 
combined standard uncertainty Uc(y) or expanded 
uncertainty 

 

Limitation of LPU approach 
 
 The model used for calculating the measurand must have 

insignificant non-linearity. When the model presents strong 
elements of non-linearity, the approximation made by 
truncation of the first term in the Taylor series used by the 
GUM approach may not be enough to correctly estimate the 
uncertainty output.  

 Validity of the central limit theorem is another limitation of 
GUM approach. Central limit theorem states that the 
convolution of a large number of distributions has a 
resulting normal distribution. Thus, it is assumed that the 
probability distribution of the output is approximately 
normal and can be represented by a t-distribution. In some 
real cases, this resulting distribution may have an 
asymmetric behavior or does not tend to a normal 
distribution, invalidating the approach of the central limit 
theorem. 

 In addition, the GUM approach may not be valid when one 
or more of the input sources are much larger than the others, 
or when the distributions of the input quantities are not 
symmetric 

 GUM methodology may also not be appropriate when the 
order of magnitude of the estimate of the output quantity 
and the associated standard uncertainty are approximately 
the same.  

 
History of Monte Carlo method 
 
Before the Monte Carlo method was developed, simulations 
tested a previously understood deterministic problem and 
statistical sampling was used to estimate uncertainties in the 
simulations. Monte Carlo simulations invert this approach, 
solving deterministic problems using a probabilistic analog. An 
early variant of the Monte Carlo method can be seen in 
the Buffon's needle experiment, in which π can be estimated by 
dropping needles on a floor made of parallel and equidistant 
strips. In the 1930s, Enrico Fermi first experimented with the 
Monte Carlo method while studying neutron diffusion, but did 
not publish anything on it. In 1946, physicists at Los Alamos 
Scientific Laboratory were investigating radiation shielding and 
the distance that neutrons would likely travel through various 
materials.  
 

Despite having most of the necessary data, such as the average 
distance a neutron would travel in a substance before it collided 
with an atomic nucleus, and how much energy the neutron was 
likely to give off following a collision, the Los Alamos 
physicists were unable to solve the problem using conventional, 
deterministic mathematical methods. Stanislaw Ulam had the 
idea of using random experiments.  Uses of Monte Carlo 
methods require large amounts of random numbers, and it was 
their use that spurred the development of pseudorandom 
number generators, which were far quicker to use than the 
tables of random numbers that had been previously used for 
statistical sampling. 
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Monte Carlo simulation: a simulation is a fictitious 
representation of reality, a Monte Carlo method is a technique 
that can be used to solve a mathematical or statistical problem, 
and a Monte Carlo simulation uses repeated sampling to 
determine the properties of some phenomenon (or behavior). 
Examples: 
 
 Simulation: Drawing one pseudo-random uniform variable 

from the interval [0,1] can be used to simulate the tossing of 
a coin: If the value is less than or equal to 0.50 designate the 
outcome as heads, but if the value is greater than 0.50 
designate the outcome as tails. This is a simulation, but not 
a Monte Carlo simulation. 

 Monte Carlo method: Pouring out a box of coins on a table, 
and then computing the ratio of coins that land heads versus 
tails is a Monte Carlo method of determining the behavior 
of repeated coin tosses, but it is not a simulation. 

 Monte Carlo simulation: Drawing a large number of 
pseudo-random uniform variables from the interval [0,1], 
and assigning values less than or equal to 0.50 as heads and 
greater than 0.50 as tails, is a Monte Carlo simulation of the 
behavior of repeatedly tossing a coin. 

 
Monte Carlo Simulation 
 
 A Monte Carlo method is a computational algorithm that relies 
on repeated random sampling to compute its results. Because of 
their reliance on repeated computation and random or pseudo-
random numbers, Monte Carlo methods are most suited to 
calculation by a computer. Monte Carlo methods tend to be 
used when it is infeasible or impossible to compute an exact 
result with a deterministic algorithm. The Monte Carlo method 
as discussed by the GUM Supplement 1 involves the 
propagation of the distributions of the input sources of 
uncertainty by using the model to provide the distribution of the 
output, whereas according to GUM, the uncertainties are to be 
propagated according to their distributions. 
 

 
Figure 1. Law of Propagation of Uncertainty (LPU) and  

Monte Carlo Method (MCM) 
 

Illustrations of the methodologies of a) propagation of 
uncertainties, where x1, x2 and x3 are input 
quantities, u(x1), u(x2) and u(x3) are their respective 
uncertainties and y and u(y) are the measurand and its 
uncertainty, respectively; and b) propagation of distributions, 
where g(x1), g(x2) and g(x3) are the distribution functions of the 
input quantities and g(y) is the distribution function of the 
measurand  
 

MEASUREMENT PROCEDURE OF   UNCERTAINITY 
 

Procedure in MS EXCEL 
 

 Using the readings of force (F) & diameters (d) calculate 
average & standard deviation(σ) values respectively. 

 DOF for force and diameter is (n-1). 
 Calculate the t-value. 
 Now calculate uncertainty of repeatability using formula 

(T*σ)/√� for the input quantities. 
 Standard uncertainty of load cell and microscope involved 

in testing procedure is provided by NPL. 
 Thus uncertainties involved in all the input quantities are 

obtained (U₁, U₂,U₃,U₄…) 
 Calculate the combined standard uncertainty (U). Formula 

used- 

                       U = �(U₁̠² + U₂² + U₃² + U₄²… . ) 

 

 Calculate effective degree of freedom without considering 
the standard uncertainty of load cell & microscope. Formula 
used- 

                     U⁴/ (U₁⁴/n-1 + U₂⁴/n-1 + ….) 

 Calculate value of δ using formula- 
                               δ=10ᶥ/2 ;  

       l= integral value equal to order of uncertainty  

       e.g. - 37*10⁻², l=-2 

 
Procedure for simulation using MCS 
 
• Using the mean and standard deviation values of the input 

quantities like force and diameter we will generate a large 
numbers of readings using Data analysis in MS excel. 

• Calculate the value of hardness for respective readings 
using the Brinell hardness formula. 

• Calculate the mean value of hardness. 
• Generate the histogram in MS excel 
• Calculate the sensitivity coefficient of force by 

differentiating the hardness with respect to force i.e. dH/dF. 
(C₁) 

• Similarly calculate sensitivity coefficient of diameter using 
dH/dD. (C₂) 

• Calculate the sensitivity coefficient of all the uncertainties 
involved using C₁ & C₂. 

• Calculate the combined standard uncertainty using the same 
formula. 

• Calculate the effective degree of freedom. 
• Calculate the final standard uncertainty in MCS 
 
CALCULATION OF UNCERTAINITY 
 
Definition of problem 
 
Assessment of MCS and calculation of uncertainty in the 
Brinell hardness test. 
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FORMULA USED: 
 

BHN = 2F/∏D (D –�(�² − ��²	)) 
 

F: Applied load, kg                                                                                                                                                 
D: Diameter of the ball indenter, mm                                                                                                                                 
Di: Mean diameter of indentation, mm                                                                                                                                  
 

INPUT TABLE 
 

 For 1st block: 
 

Table 1. Brinell hardness test readings for 1st block 
 

Force (kgf) 187.5 187.5 187.5 187.5 187.5 

Diameter(mm) 2.5 2.5 2.5 2.5 2.5 
 

 For 2nd block: 
 

Table 2. Brinell hardness readings for 2nd block 
 

Force (kgf) 3000 3000 3000 3000 3000 

Diameter(mm) 10 10 10 10 10 

 

Uncertainty of Load cell at 95% confidence level: ± 0.2 kgf 
Uncertainty of Microscope at 95% confidence level: ± 0.01 
mm 

 
 

Figure 3. Hardness tested blocks, Block 1st (2.5/187.5) (left), Block 
2nd (10/3000) (right). {Ref: NPL} 

 

OBSERVATION TABLE 
 

 For 1st block: 
 

Table 3. Uncertainty table for 1st block 
 

Parameters Standard 
Uncertainty 

Average Standard 
Deviation 

Distribution 

Force (F) 0.09375 187.5 0.293941 Normal 
Load Cell  0.1% ---- ---- ---- 
Indenter Dia. (D) 0.000025 2.5 0.00000588 Normal 
Indentation Dia.(Di) 0.000194 1.0248 0.0005864 Normal 
Microscope 0.00005 ---- ---- ---- 

 

Combined Standard Uncertainty:  = 
(0.00002^2+0.1^2+0.0001941^2+0.000049^2)^0.5 
Effective Degree of Freedom: 634383891217.80700000 
Final Uncertainty: 0.100000202 
 

Calculation for MCS 
 

Sensitivity Co-efficient of Force (F): 1.159678 
Sensitivity Co-efficient of Diameter: 8.36605 
Sensitivity Co-efficient of indentation diameter (d): 443.8083 
Sensitivity Co-efficient of Force x St. Uncertainty of Force (F) 
= 0.108720 
Sensitivity Co-efficient of Diameter x St. Uncertainty of 
diameter (D) = 0.000209 
Sensitivity Co-efficient of indentation dia. x Uncertainty of 
Diameter (d) = 0.086099 
Standard uncertainty (U) = 0.138683298 

Coverage Factor at 95% confidence level = 2 
Expanded uncertainty= 0.277366596 
Y (average value of hardness from random trials) = 216.96 
 
HISTOGRAM 
 

 
 

 

• For 2nd block 
 

 

Table 4. Uncertainty table for 2nd block 
 

Parameters Standard 
Uncertainty 

Average Standard 
Deviation 

Distribution 

Force (F)           1.5 3000 0.316228 Normal 
Load Cell  0.1% ---- ---- ---- 
Indenter Dia. (D) 0.000025 10 0.015811 Normal 
Indentation 
Dia.(Di) 

0.000116495 3.3834  
0.001158555 

Normal 

Microscope 0.00005 ---- ---- ---- 
 
 

Combined Standard Uncertainty:  = 
(0.005^2+0.1^2+0.000116495^2+0.00005^2) ^0.5 
Effective Degree of Freedom: 4911126774829.37000000 
Final Uncertainty: 0.10012499 
 Delta:  
 

Calculation for MCS 
 

Sensitivity Co-efficient of Force (F): 0.006754 
Sensitivity Co-efficient of Diameter: 2.026067 
Sensitivity Co-efficient of indentation diameter (d): 197.0859 
Sensitivity Co-efficient of Force x St. Uncertainty of Force (F) 
= 0.010130336 
Sensitivity Co-efficient of Diameter x St. Uncertainty of 
diameter (D) = 0.00005065168 
Sensitivity Co-efficient of indentation dia. x Uncertainty of 
Diameter (d) = 0.022959552 
Standard uncertainty (U) = 0.025095165 
Coverage Factor at 95% confidence level = 2 
Expanded uncertainty= 0.05019033 
Y (average value of hardness from random trials) = 323.2891 
 
HISTOGRAM 
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RESULTS AND DISCUSSION 
 

Comparison of values of uncertainty for both blocks 
 

 For 1st block 
 

 Experimental Data Data using MCS 

Standard Uncertainty 0.13 0.138683298 
Expanded Uncertainty 0.27 0.277366596 

 

 For 2nd block 
 

 Experimental Data Data using MCS 

Standard Uncertainty 0.07 0.025095165 
Expanded Uncertainty 0.23 0.05019033 

 

The standard uncertainty and the expanded uncertainty obtained 
from the Monte Carlo Simulation method is less than or 
approximately equal to the respective values obtained from the 
fundamental method of uncertainty evaluation, this validates 
the calculation of uncertainty using MCS. MCS proved to be 
valuable & flexible computational tool in uncertainty 
measurement. In MCS it is relatively easy to handle multiple 
sources of uncertainty as here there are different factors 
influencing the uncertainty in measurement of hardness (force, 
indenter diameter, indentation diameter). 
 

Random numbers are generated from the observed values of 
input quantities to determine if the index values go up or down. 
In MCS we propagate the distribution of each input quantity. 
The type of distribution is according to the number of 
observations taken and the data mentioned in the fundamental 
document. On the other hand in LPU we propagate the 
uncertainty involved in each input quantity. Due to this reason 
the uncertainty involved in measurement is reduced after Monte 
Carlo Simulation technique.  
 

Thus the validation of MCS is approved and we can say that 
MCS supports the fundamentals of LPU. But this has to be 
made very clear that validation of MCS doesn’t discard LPU. In 
fact LPU gives the fundamentals about uncertainty 
measurement and MCS takes the results to greater efficiency. 
Thus we can more closely analyze the risk involved in the 
measurement and the confidence level of consumer is increased 
to a greater level.   
 

 Conclusion 
 

The present study discusses the uncertainty of measurement 
evolution for Brinell hardness blocks by the conventional 
techniques (LPU) and recently adopted by JCGM, Monte Carlo 
simulation. Hardness measurement is very important for 
characterizing any material and shows the ability of the 
material against any scratch or resistance to deformation. 
Hardness is in fact a destructive testing procedure and hence, 
the blocks used for measuring the properties of material are 
reference one. Uncertainty of measurement is very important in 
terms of confidence of the measurement procedure and helps 
the scientist/technocrats to prove their claims about the 
experimental measurements. Uncertainty of measurement 
evaluated broadly by law of propagation of uncertainty which is 
based on fundamental law of statics and assumes the 
uncertainty propagates while calculating the uncertainty of 
measurement of any measurement process. Monte Carlo 
Simulation techniques though have been evolved in late 1940s 
has been used for various industrial and management issues 

have been used for uncertainty of measurement evolution in 
early 2000s andin2008, adopted for uncertainty evolution.  In 
the present study two blocks of different scales of brinell 
hardness (2.5/187.5, 10/3000) scales have been used as a 
artifact. The hardness blocks are calibrated according to the 
standard evolution procedure ISO. Using the primary standard 
of brinell hardness at NPL, India (which maintain the standard 
at primary level in country). The uncertainty of measurement is 
evaluated by LPU and found to be well within limits. Monte 
Carlo Simulation techniques have been used to evaluate the 
uncertainty of measurements of hardness blocks and suitable 
procedure adopted accordingly. The uncertainty computed by 
both the means is found within limits and MCS supports the 
claims of LPU. In addition, it is also to be said that MCS 
doesn’t attempt to downside LPU as MCS is complementary to 
LPU and attempts to validate the results of LPU. In addition, it 
is now expected that the procedure adopted for present 
investigation to be extended throughout the different types of 
scales of hardness i.e. Rockwell, vicker, brinell as well as 
different scale of each type of scale like BHN 2.5/187.5, 5/750, 
10/3000 etc. for future re-affirmation. 
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