Research Article

DETERMINATION OF RELATIVE NUMBERS BY USING COUPLE SYSTEMS AND ITS APPLICATION TO THE ATOMIC FIELDS AND QUARK COUPLING STRENGTH, TALLIED EXPERIMENT OF THE LHCB COLLABORATION, JULY 2015

*Nirmalendu Das

Advanced Study and Research in Mathematical Science (UKS), Old Post Office line, Jalpaiguri, Life Member (2): Indian Science Congress Association, India

ARTICLE INFO

Article History:

Received $15^{\text {th }}$, September 2015
Received in revised form $08^{\text {th }}$, October 2015
Accepted 30 ${ }^{\text {th }}$, November 2015
Published online $30^{\text {th }}$, December 2015

Keywords:

Formation of Electron,
Proton,
Neutron,
Relative Numbers of All Elements, Decays of Quarks.

Abstract

The couple system is important one to determine different types of numbers that we can call "Relative Numbers". We discussed about this formation, though more process of couple system is require discussing. The application need of it's to atomic field is interesting. In what way the number of electron, proton, neutron to be formed few examples are given here and listed relative numbers from Hydrogen, atomic number 1 to atomic number up to 118 that's do not follow our traditional theories. But the results are tallying uniquely to present thinking. This new theory tells many expectations in atomic stages. We need to search more in this field, here we can give touch for truth of relations between one to another particle. As a result "Relative Number" occurred by coupling by interacting two numbers. Odd and even number both obeying couple system, but direction changes at the end of reaction. We already discussed about it in reference [Nirmalendu Das, 2015] and [Nirmalendu Das, 2015]. Though need to give touch here understanding about this subject. This formation is applicable to particle stages also. As per reference [doi: 10.1038/nphys3415 Received 08 April 2015 Accepted 25 June 2015 Published online 27 July 2015], Nature Physics published a paper on $27^{\text {th }}$ July, 2015 quark coupling strength $\left|V_{u b}\right|$ using baryonic decays. The experiments done by LHCb collaboration. The relative numbers in the form of a particle keeping relation between two particles thus decaying to other form which obeying the principles of couple system. Moreover, the equation of relative numbers is able to find the number of cells of brain and other parts of a body.

Copyright © 2015 Nirmalendu Das. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Problem (2):

When, $(r+M)^{5} \rightarrow r^{5}+5 r\left(r^{3}+2 r^{2}+2 r+1\right)+1^{5}$, then, $R=r^{3}+2 r^{2}+2 r+1$, if A, B, C, D represents the corresponding values of r^{3}, $2 r^{2}, 2 r, 1$ (Since, these are the real values of $(r+1)^{5}$) respectively. Then, R will relate in Couple Systems as follows:

$\mathrm{R} \rightarrow\left(\mathrm{D}^{-} .2 \mathrm{r}+1 . \mathrm{C}\right)+\left(\mathrm{C}^{+} .2 \mathrm{r}^{2}+2 \mathrm{r}^{+} . \mathrm{B}\right)+\left(\mathrm{B}^{-} .2 \mathrm{r}^{3}+2 \mathrm{r}^{-2} . \mathrm{A}\right)$
$R \rightarrow(1.2 r+1.2 r)+\left(2 r .2 r^{2}+2 r .2 r^{-2}\right)+\left(2 r^{2} .2 r^{3}+2 r^{-2} . r^{3}\right)$
$R \rightarrow 1 .(2 r+2 r)+\left(2 r .2 r^{2}-2 r .2 r^{-2}\right)+\left(2 r^{2} .2 r^{3}-2 r^{-2} . r^{3}\right)$

[^0]$\mathrm{R} \rightarrow 4 \mathrm{r}+0+0$
$\mathrm{R} \rightarrow 4 \mathrm{r}$
Therefore, $(r+1)^{5} \rightarrow r^{5}+5 r .4 r+1^{5}$
If $\mathrm{M}=2,3,4,5 \ldots$. [Vide Problem (1)], then,
\[

$$
\begin{aligned}
& (\mathrm{r}+2)^{5} \rightarrow \mathrm{r}^{5}+2^{7} .5 \mathrm{r} .4 \mathrm{r}+1^{5} \\
& (\mathrm{r}+3)^{5} \rightarrow \mathrm{r}^{5}+3^{7} .5 \mathrm{r} .4 \mathrm{r}+1^{5} \\
& (\mathrm{r}+4)^{5} \rightarrow \mathrm{r}^{5}+4^{7} .5 \mathrm{r} .4 \mathrm{r}+1^{5} \\
& (\mathrm{r}+5)^{5} \rightarrow \mathrm{r}^{5}+5^{7} .5 \mathrm{r} .4 \mathrm{r}+1^{5} \\
& (\mathrm{r} \cdots \cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$
\]

Therefore, the real formation of $(r+1)^{5}$ will $r^{5}+1^{7} .5 r .4 r+1^{5}$

Problem (3):

When, $(r+M)^{7} \rightarrow r^{7}+7 r\left(r^{5}+3 r^{4}+5 r^{3}+5 r^{2}+3 r+1\right)+1^{7}$, then, R will related to bellow as:

$$
\begin{aligned}
& \therefore \mathbf{R} \rightarrow\left(\mathrm{F}^{-} .3 \mathrm{r}+1^{+} . \mathrm{E}\right)+\left(\mathrm{E}^{+} .5 \mathrm{r}^{2}+3 \mathrm{r}^{+} . \mathrm{D}\right)+\left(\mathrm{D}^{-} .5 \mathrm{r}^{3}+5 \mathrm{r}^{-2} . \mathrm{C}\right)+\left(\mathrm{C}^{+} .3 \mathrm{r}^{4}+5 \mathrm{r}^{+3} . \mathrm{B}\right)+\left(\mathrm{B}^{-} . \mathrm{r}^{5}+3 \mathrm{r}^{-} . \mathrm{A}\right) \\
& \mathbf{R} \rightarrow(1.3 r+1.3 r)+\left(3 r .5 r^{2}+3 r .5 r^{-2}\right)+\left(5 r^{2} .5 r^{3}+5 r^{-2} .5 r^{3}\right)+\left(5 r^{3} .3 r^{4}+5 r^{3} .3 r^{-4}\right)+\left(3 r^{4} \cdot r^{5}+3 r^{-4} \cdot r^{5}\right) \\
& R \rightarrow(1.3 r+1.3 r)+0+0+0+0=1 .(3 r+3 r)=1 \times 6 r=6 r \text {. } \\
& \dot{\circ}(\mathrm{r}+1)^{7} \rightarrow \mathrm{r}^{7}+1^{7} .7 \mathrm{r} \cdot 6 \mathrm{r}+1^{7} \text { and if } \mathrm{M}=2,3,4,5 \ldots \ldots \text {, then } \\
& (\mathrm{r}+2)^{7} \rightarrow \mathrm{r}^{7}+2^{11} .7 \mathrm{r} \cdot 6 \mathrm{r}+2^{7} \\
& (\mathrm{r}+3)^{7} \rightarrow \mathrm{r}^{7}+3^{11} .7 \mathrm{r} \cdot 6 \mathrm{r}+3^{7} \\
& (\mathrm{r}+4)^{7} \rightarrow \mathrm{r}^{7}+4^{11} .7 \mathrm{r} \cdot 6 \mathrm{r}+4^{7} \\
& (\mathrm{r}+5)^{7} \rightarrow \mathrm{r}^{7}+5^{11} .7 \mathrm{r} .6 \mathrm{r}+5^{7} \\
& (r+M)^{7} \rightarrow r^{7}+M^{11} .7 r .6 r+M^{7}
\end{aligned}
$$

We have seen that, the "No - 1 formation" is only for the series of odd numbers as $1,2,3,4,5 \ldots$, if the series increases, then the process of couple will increase.

Application of "No - $\mathbf{2}$ formation" for even number.
Problem (1):

$$
\left.\begin{array}{c}
(\mathrm{r}+1)^{4} \rightarrow \mathrm{r}^{4}+4 \mathrm{r} .\left(\mathrm{r}^{2}+[3 / 2] \times \mathrm{r}+1\right)+1^{4}=\mathrm{r}^{4}+4 \mathrm{r} .(\mathrm{R})+1^{4} \\
\mathrm{R} \rightarrow\left(\mathrm{C} .[3 / 2] \times \mathrm{r}+1^{-} . \mathrm{B}\right)+\left(\mathrm{B}^{-} . \mathrm{r}^{2}+[3 / 2] \times \mathrm{r}^{-} . \mathrm{A}\right) \\
\mathrm{R} \rightarrow\left(1 .[3 / 2] \times \mathrm{r}+1^{-} .[3 / 2] \times \mathrm{r}\right)+\left([3 / 2] \times \mathrm{r} . \mathrm{r}^{2}+[3 / 2] \times \mathrm{r}^{-} . \mathrm{r}^{2}\right) \\
\mathrm{R}
\end{array}\right) \text { 2.[3/2]xr+0=3r} \text {. }
$$

The figure is given here that in what way coupling is proceedings stage by stage.

Note:

$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{3} .=a^{4}+2 a b\left(2 a^{2}+3 a b+2 b^{2}\right)+b^{4}$.

$$
=a^{4}+4 a b\left(a^{2}+[3 / 2] x a b+b^{2}\right)+b^{4} \text {, when } b=1 \text {, then, }
$$

$(a+1)^{4}=a^{4}+4 a .1\left(a^{2}+[3 / 2] \times a .1+1^{2}\right)+1^{4}=a^{4}+4 a\left(a^{2}+[3 / 2] x a+1^{2}\right)+1^{4}$, when, $a=r$, then, $(r+1)^{4}=r^{4}+4 r\left(r^{2}+[3 / 2] x r\right.$ $\left.+1^{2}\right)+1^{4}=$ Let, $\mathrm{R}=\left(\mathrm{r}^{2}+[3 / 2] \times \mathrm{r}+1^{2}\right)$ and so,
$(\mathrm{r}+1)^{4} \rightarrow \mathrm{r}^{4}+4 \mathrm{r} .(\mathrm{R})+1^{4} \rightarrow \mathrm{r}^{4}+4 \mathrm{r} .([3 / 2] \mathrm{xr})+1^{4}$ and $\mathrm{R} \rightarrow[3 / 2] \times \mathrm{r}=3 . \mathrm{r}=3 \mathrm{r}$. Now we can get a series in the forms of: $(\mathrm{r}+1)^{4}$ $\rightarrow r^{4}+1^{5} .4 r .3 r+1^{4}$

Similarly, $(r+2)^{4} \rightarrow r^{4}+2^{5} .4 r .3 r+2^{4}$

$$
\begin{aligned}
& (\mathrm{r}+3)^{4} \rightarrow \mathrm{r}^{4}+3^{5} .4 \mathrm{r} .3 \mathrm{r}+3^{4} \\
& (\mathrm{r}+4)^{4} \rightarrow \mathrm{r}^{4}+4^{5} .4 \mathrm{r} .3 \mathrm{r}+4^{4} \\
& (\mathrm{r}+5)^{4} \rightarrow \mathrm{r}^{4}+5^{5} .4 \mathrm{r} .3 \mathrm{r}+5^{4}
\end{aligned}
$$

$$
(\mathrm{r}+\mathrm{M})^{4} \rightarrow \mathrm{r}^{4}+\mathrm{M}^{5} .4 \mathrm{r} .3 \mathrm{r}+\mathrm{M}^{4}
$$

For power 6, we get,

$$
\begin{aligned}
& (\mathrm{r}+1)^{6} \rightarrow \mathrm{r}^{6}+1^{9} .6 \mathrm{r} \cdot 5 \mathrm{r}+1^{6} \\
& (\mathrm{r}+2)^{6} \rightarrow \mathrm{r}^{6}+2^{2} .6 \mathrm{r} \cdot 5 \mathrm{r}+2^{6} \\
& (\mathrm{r}+3)^{6} \rightarrow \mathrm{r}^{6}+3^{9} .6 \mathrm{r} \cdot 5 \mathrm{r}+3^{6} \\
& \ldots . \\
& (\mathrm{r}+\mathrm{M})^{6} \rightarrow \mathrm{r}^{6}+\mathrm{M}^{9} .6 \mathrm{r} \cdot 5 \mathrm{r}+\mathrm{M}^{6}
\end{aligned}
$$

"No -2 , formation" is only for the series of powers of $(r+M)$, when integrates acts as a function of, $2,4,6,8 \ldots$. If the series increases then the process of couple increases.

Hence the series:

$$
\begin{aligned}
& (\mathrm{r}+\mathrm{M})^{2} \rightarrow \mathrm{r}^{2}+\mathrm{M}^{1} .2 \mathrm{r} .1 \mathrm{r}+\mathrm{M}^{2} \\
& (\mathrm{r}+\mathrm{M})^{3} \rightarrow \mathrm{r}^{3}+\mathrm{M}^{3} .3 \mathrm{r} .2 \mathrm{r}+\mathrm{M}^{3} \\
& (\mathrm{r}+\mathrm{M})^{4} \rightarrow \mathrm{r}^{4}+\mathrm{M}^{5} .4 \mathrm{r} .3 \mathrm{r}+\mathrm{M}^{4} \\
& (\mathrm{r}+\mathrm{M})^{5} \rightarrow \mathrm{r}^{5}+\mathrm{M}^{7} .5 \mathrm{r} .4 \mathrm{r}+\mathrm{M}^{4} \\
& (\mathrm{r}+\mathrm{M})^{6} \rightarrow \mathrm{r}^{6}+\mathrm{M}^{9} .6 \mathrm{r} .5 \mathrm{r}+\mathrm{M}^{6} \\
& (\mathrm{r}+\mathrm{M})^{7} \rightarrow \mathrm{r}^{7}+\mathrm{M}^{11} .7 \mathrm{r} .6 \mathrm{r}+\mathrm{M}^{7}
\end{aligned}
$$

$(r+M)^{N} \rightarrow r^{N}+M^{[1+2(N-2)]} . N r .(N-1) r+M^{N} \ldots$ (A)
$(r+M)^{N} \rightarrow r^{N}+M^{Z} . N r .(N-1) r+M^{N} \ldots(B)$ When, $Z=[1+2(N-2)] \& N=2,3.4 \ldots .$.
In the case of negative functions, this equation will turn to:
$(\mathrm{r}-\mathrm{M})^{\mathrm{N}} \rightarrow \mathrm{r}^{\mathrm{N}}-\mathrm{M}^{[1+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} .(\mathrm{N}-1) \mathrm{r}-\mathrm{M}^{\mathrm{N}}$
$(\mathrm{r}-\mathrm{M})^{\mathrm{N}} \rightarrow \mathrm{r}^{\mathrm{N}}-\mathrm{M}^{\mathrm{Z}} . \mathrm{Nr} .(\mathrm{N}-1) \mathrm{r}-\mathrm{M}^{\mathrm{N}}$
Relative Numbers (R):
The middle part of the equation (A) or (B) and (C) or (D) is same. We have the Relative number as $[\mathrm{Nr} .(\mathrm{N}-1) \mathrm{r}]$ which connected to $\mathrm{M}^{[1+2(N-2)]}$ or M^{Z}, when $\mathrm{Z}=[1+2(\mathrm{~N}-2)]$ of $(\mathrm{r}+\mathrm{M})^{\mathrm{N}}$ or $(\mathrm{r}-\mathrm{M})^{\mathrm{N}}$. so, we may write the general equation in the form of:
$(r \pm M)^{N} \rightarrow r^{N} \pm M^{[1+2(N-2)]} . \operatorname{Nr} .(N-1) r \pm M^{N}$
And middle part of this equation is $\mathrm{M}^{[1+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} .(\mathrm{N}-1) \mathrm{r}$
When, $\mathrm{N}=1,2,3,4,5 \ldots$. we get relative numbers $1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}, 4 \mathrm{r}, 5 \mathrm{r}$ etc both of even and odd numbers. The equation (A) obtained by the couple system and is applicable in forming relative numbers with respect to Z of which numbers become odd in series, when $N=2,3,4,5 \ldots$ of the equation, $M^{[1+2(N-2)]} . N r .(N-1) r$. On changing the number of Z as $Z=[2+2(N-2)]$, we get,

$$
\begin{aligned}
& \quad \mathrm{M}^{[2+2(N-2)]} \mathrm{Nr} .(\mathrm{N}-1) \mathrm{r} \rightarrow \mathrm{M}^{2} .2 \mathrm{r} .1 \mathrm{r} \text {, when } \mathrm{N}=2 \\
& \mathrm{M}^{[2+2(\mathrm{~N}-2)]} \text {.Nr. }(\mathrm{N}-1) \mathrm{r} \rightarrow \mathrm{M}^{4} .3 \mathrm{r} .2 \mathrm{r} \text {, when } \mathrm{N}=3 \text {, where, }(\mathrm{r}+\mathrm{M})^{3} \rightarrow \mathrm{M}^{3} .3 \mathrm{r} .2 \mathrm{r} \text {, when, } \mathrm{N}=3 \text {, due to change of } \mathrm{Z} \text {, power } \\
& \text { changes as: }
\end{aligned}
$$

When, $Z=[1+2(N-2)], Z=-3$, when, $N=0$ (not satisfying). $\mathrm{Z}=[1+2(\mathrm{~N}-2)], \mathrm{Z}=-1$, when, $\mathrm{N}=1$ (not satisfying). $\mathrm{Z}=[1+2(\mathrm{~N}-2)], \mathrm{Z}=1$, when, $\mathrm{N}=2$ (satisfying). It shows $\mathrm{N}>1$
If, $Z=[2+2(N-2)]$, we get, $\mathrm{Z}=[2+2(\mathrm{~N}-2)], \mathrm{Z}=-2$, when, $\mathrm{N}=0$ (not satisfying)
$\mathrm{Z}=[2+2(\mathrm{~N}-2)], \mathrm{Z}=0$, when, $\mathrm{N}=1$ (satisfying), because, $\mathrm{M}^{\mathrm{Z}}=\mathrm{M}^{0}=1$

$$
Z=[2+2(N-2)], Z=2 \text {, when, } N=2 \text { (satisfying), } N>1
$$

At the time of changing of Z, let, $N r .(N-1) r$ will change to $N r .(N-2)$, then, we get a series as:

$$
\begin{aligned}
& \mathrm{M}^{[2+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} .(\mathrm{N}-2) \mathrm{r} \rightarrow \mathrm{M}^{0} \cdot 0 \times \mathrm{x} \cdot(0-2) \mathrm{r}=0, \text { when } \mathrm{N}=0 \\
& \mathrm{M}^{[2+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} .(\mathrm{N}-2) \mathrm{r} \rightarrow \mathrm{M}^{-1} .1 \mathrm{r} .(1-2) \mathrm{r}=\mathrm{M}^{-1} \times 1 \mathrm{r} x-1=-\mathrm{M}^{-1} \quad \text { when } \mathrm{N}=1 \\
& \mathrm{M}^{[2+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} .(\mathrm{N}-2) \mathrm{r} \rightarrow \mathrm{M}^{2} \cdot 2 \mathrm{r} .0 \mathrm{xr}=0, \text { when } \mathrm{N}=2 \\
& \mathrm{M}^{[2+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} .(\mathrm{N}-2) \mathrm{r} \rightarrow \mathrm{M}^{4} .3 \mathrm{r} .1 \mathrm{r}, \text { when } \mathrm{N}=3 \text { etc., } \mathrm{N}>2
\end{aligned}
$$

When this equation turns to $\mathrm{M}^{[2+2(N-2)]} \cdot \mathrm{Nr} . \mathrm{Nr} \ldots \ldots(\mathrm{G})$, when, $(\mathrm{N}-1) \mathrm{r}$ treated as Nr , then we will get even numbers (Z) of M of the series. So,

$$
\begin{aligned}
& \mathrm{M}^{[2+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} \cdot \mathrm{Nr} \rightarrow \mathrm{M}^{2} \cdot 2 \mathrm{r} .2 \mathrm{r} \text {, when, } \mathrm{N}=2, \mathrm{~N}>1 \\
& \mathrm{M}^{[2+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} \cdot \mathrm{Nr} \rightarrow \mathrm{M}^{4} \cdot 3 \mathrm{r} .3 \mathrm{r} \text {, when, } \mathrm{N}=3 \\
& \mathrm{M}^{[2+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} \cdot \mathrm{Nr} \rightarrow \mathrm{M}^{6} \cdot 4 \mathrm{r} .4 \mathrm{r} \text {, when, } \mathrm{N}=4 \text { etc. }
\end{aligned}
$$

Therefore, the deduction (F) and (G) finds,
$M^{[1+2(N-2)]} \cdot N r .(N-1) r \rightarrow M^{1} .2 r .1 r$, when, $N=2, Z=1$ of power of M, odd number.
$M^{[2+2(N-2)]} . N r . N r \rightarrow M^{2} .2 r .2 r$, when, $N=2, Z=2$ of power of M, even number.
$\mathrm{M}^{[1+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} .(\mathrm{N}-1) \mathrm{r} \rightarrow \mathrm{M}^{3} .3 \mathrm{r} .2 \mathrm{r}$, when, $\mathrm{N}=3, \mathrm{Z}=3$ of power of M , odd number.
$\mathrm{M}^{[2+2(\mathrm{~N}-2)]} . \mathrm{Nr} . \mathrm{Nr} \rightarrow \mathrm{M}^{4} .3 \mathrm{r} .3 \mathrm{r}$, when, $\mathrm{N}=3, \mathrm{Z}=4$ of power of M , even number.

From the above deduction, we have the following results as:
i) When, $\quad \mathrm{N}=0$, the equation (F) yields $\mathrm{M}^{-3} \cdot 0 \mathrm{r} .(-1)$.r
ii) " $\mathrm{N}=0$,
(G) " $\mathrm{M}^{-2} .0 \mathrm{r} .0 \mathrm{r}$
iii) " $\mathrm{N}=1$,
(F) " M^{-1}.1r.0r
iv) " $\mathrm{N}=1$,
(G) " M^{0}.1r.1r

Therefore, when N has tendency to proceed in negative direction, i.e, $\mathrm{N}=-1,-2,-3,-4 \ldots \ldots$ then the deduction (F) \& (G) will give results, the yielded values are listed here in a table (Zr) and corresponding graph -Zr .

Table (Zr)

```
M Z x [ [\begin{array}{lll}{2}&{X}&{\mp@subsup{r}{1}{}}\end{array}]\quad\mp@subsup{M}{}{-Z}[\begin{array}{lllll}{\textrm{X}}&{-\mp@subsup{r}{2}{\prime}}&{\textrm{X}}&{-\mp@subsup{r}{}{\prime}\mp@subsup{}{1}{\prime}}\end{array}]
    R.H.S.(Relative No.) (Relative No.) L.H.S.
```

| M^{0} | x | 1 | x | 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M^{1} | x | 2 | x | 1 | M^{-1} | x | 1 | x | 0 |
| M^{2} | x | 2 | x | 2 | M^{-2} | x | 0 | x | 0 |
| M^{3} | x | 3 | x | 2 | M^{-3} | x | 0 | x | -1 |
| M^{4} | x | 3 | x | 3 | M^{-4} | x | -1 | x | -1 |
| M^{5} | x | 4 | x | 3 | M^{-5} | x | -1 | x | -2 |
| M^{6} | x | 4 | x | 4 | M^{-6} | x | -2 | x | -2 |
| M^{7} | x | 5 | x | 4 | M^{-7} | x | -2 | x | -3 |
| M^{8} | x | 5 | x | 5 | M^{-8} | x | -3 | x | -3 |
| M^{9} | x | 6 | x | 5 | M^{-9} | x | -3 | x | -4 |
| M^{10} | x | 6 | x | 6 | M^{-10} | x | -4 | x | -4 |
| $\mathrm{M}^{11} \mathrm{x}$ | 7 | x | 6 | M^{-10} | x | -4 | x | -5 | |
| M^{12} | x | 7 | x | 7 | M^{-10} | x | -5 | x | -5 |

up to n numbers, but not to infinity.

If the reaction occurs by acting with M and M^{-}, then M will turn to Z , thus:

- $M^{1} \cdot M^{-1} \rightarrow\left(r_{2}-r^{\prime}{ }_{2}\right),\left(r_{1}-r_{1}^{\prime}\right)$
$\rightarrow(2-1),(1-0) \quad$ When, $r_{2}, r_{1}=2,1$ and $r^{\prime}{ }_{2}, r_{1}^{\prime}=1,0$
Or, $\mathrm{M}^{0} \rightarrow 1,1$
- $\mathrm{M}^{6} \cdot \mathrm{M}^{-6} \rightarrow\left(\mathrm{r}_{2}-\mathrm{r}^{\prime}{ }_{2}\right),\left(\mathrm{r}_{1}-\mathrm{r}_{1}^{\prime}\right)$
$\rightarrow[4-(-2)],[4-(-2)] \quad$ When, $r_{2}, r_{1}=4,4$ and $r^{\prime}{ }_{2}, r^{\prime}{ }_{1}=-2,-2$
Or, $\mathrm{M}^{0} \rightarrow 6,6$
- $\quad M^{9} \cdot M^{-9} \rightarrow\left(r_{2}-r^{\prime}{ }_{2}\right),\left(r_{1}-r_{1}^{\prime}\right)$
$\rightarrow[6-(-3)],[5-(-4)] \quad$ When, $\mathrm{r}_{2}, \mathrm{r}_{1}=6,5$ and $\mathrm{r}^{\prime}{ }_{2}, \mathrm{r}_{1}^{\prime}=-3,-4$
Or, $\mathrm{M}^{0} \rightarrow 9,9$

The above deductions proves that when the power of positive number of M and power of negative number of M react together, the power of M becomes zero and finally two Z number of positive number of M are obtained, i.e.,

$$
\mathrm{M}^{\mathrm{Z}} \cdot \mathrm{M}^{-\mathrm{Z}} \rightarrow \mathrm{Z}, \mathrm{Z} \text { or } \mathrm{M}^{0} \rightarrow \mathrm{M}^{0} \cdot \mathrm{Z} \cdot \mathrm{Z} \ldots \ldots \ldots .(\mathrm{H})
$$

Now it is possible to react $M^{0} . Z . Z$ with $M^{Z} . r_{2} . r_{1}$, and then r_{2}, r_{1} will change at the rate of $\left(r_{2}-2\right)$ and ($r_{1}-2$). But the rate of change of $\left(r_{2}-2\right)$ and $\left(r_{1}-2\right)$ will not be relative numbers of M^{Z}. The power (Z) of M should differ by 4 steps and M^{Z} will turn to M^{Z-4}, then for example, 87 of (Z) number will produce relative numbers to follow the equation (F) as:
$\mathrm{M}^{[1+2(\mathrm{~N}-2)]} \cdot \mathrm{Nr} .(\mathrm{N}-1) \mathrm{r} \rightarrow \mathrm{M}^{87} .45 .44$, when $\mathrm{N}=45$ and correspondingly for M^{0} (equation -H), $\mathrm{M}^{0} . \mathrm{Z} . \mathrm{Z} \rightarrow \mathrm{M}^{0} .87 .87$, now, $\mathrm{M}^{87} .45 .44 \times \mathrm{M}^{0} .87 .87 \rightarrow \mathrm{M}^{(87-0)} .(87-44) .(87-45) \rightarrow \mathrm{M}^{87} .43 .42$, these are not the relative number of M87 according to equation (C), because, when, $N=43$, then, the power of M will 83 . The difference between $87 \& 83$ is 4 , this 4 difference will come in every numbers and applicable to all cases. So, general form of this equation will:
$M^{Z} \cdot r_{2} . r_{1} \times M^{0} . Z . Z \rightarrow M^{[Z-4]} .\left(Z-r_{1}\right) .\left(Z-r_{2}\right) \rightarrow M^{[Z-4]} \cdot\left(r_{1}-2\right) .\left(r_{2}-2\right)$.
We observed in table $-(\mathrm{Zr})$ that when M^{0}. 1.1 will react with $\mathrm{M}^{-4} .-1 .-1$, M will get exponent $-4(Z=-4)$ but without relative numbers, thus,
$\mathrm{M}_{1,1}^{0} . \mathrm{M}_{-1,-1}^{-4} \rightarrow \mathrm{M}_{0,0}^{-4}$. So, $\mathrm{M}_{0,0}^{-4} . \mathrm{M}^{0}{ }_{. \mathrm{Z}, \mathrm{Z}} \rightarrow \mathrm{M}^{-4} . Z . Z$. Now $\mathrm{M}^{\mathrm{Z}} \cdot \mathrm{r}_{2} . \mathrm{r}_{1}$ will react with the new form, $M^{Z} \cdot r_{2} \cdot r_{1} \times M^{-4} \cdot Z \cdot Z \rightarrow M^{[Z-4]} \cdot\left(Z-r_{1}\right) \cdot\left(Z-r_{2}\right)$

If we consider, that M is an element of atomic number Z, then this rule is applicable for transmutation of element from one to another. For examples:

How to form Proton, Electron and Neutron in an Atom?

Application of symbol $\mathrm{M}^{\mathrm{Z}}\left[. \mathrm{r}_{2} . \mathrm{r}_{1}\right]$ and $\mathrm{M}^{-\mathrm{Z}} \cdot\left[-\mathrm{r}_{2}^{\prime} .-\mathrm{r}_{1}^{\prime}\right]$ pertaining to relative numbers r_{2} and r_{1} to the concept of atomic state.
The above symbols will be able to determine the formation of protons, electrons in the following way.
According to $M^{Z} . M^{-Z} \rightarrow Z, Z$ or $M^{0} \rightarrow M^{0} . Z . Z \ldots(H)$, we observed that, this equation is in same direction, when relative numbers of $\mathrm{M}^{\mathrm{Z}} . \mathrm{r}_{2}, \mathrm{r}_{1}$ and $\mathrm{M}^{-\mathrm{Z}} .-\mathrm{r}^{\prime}{ }_{2},-\mathrm{r}_{1}{ }_{1}$ acts as $\left(\mathrm{r}_{2}-\mathrm{r}^{\prime}{ }_{2}\right.$ and $\left(\mathrm{r}_{1}^{\prime}-\mathrm{r}_{1}{ }_{1}\right)$. If relative numbers of the above problem react as $\left(\mathrm{r}_{2}-\mathrm{r}^{\prime}{ }_{1}\right.$ and $(-$ $\mathrm{r}_{2}^{\prime}-\mathrm{r}_{1}^{\prime}$), the number Z may treated as atomic numbers for the elements. The atom consists of same number of proton and electron. Therefore, atomic number $(Z)=$ number of proton $(Z)=$ number of electron (Z). So, we can represent equation (H) for atomic stage as:
$M^{Z} \cdot r_{2}, r_{1} \times M^{-Z} .-r_{2}^{\prime},-r^{\prime}{ }_{1} \rightarrow M^{Z-Z}\left[\cdot r_{2}-\left(-r^{\prime}\right)\right],\left[\left(-r^{\prime}\right)-r_{1}\right] \rightarrow M^{0} \cdot z \cdot \bar{z}$, here $Z=$ proton $\& \bar{Z}=$ electron. But we cannot consider M^{0}, because, M^{0} means $1=$ number only whose has no proton and electron, in this case, we may consider M^{0} as M^{W}, where, $\mathrm{W}=$ atomic mass of the element.
Then the equation,

$$
\mathrm{M}^{0} \cdot \mathrm{Z} \cdot \overline{\mathrm{Z}} \rightarrow \mathrm{M}^{\mathrm{W}} \cdot \mathrm{Z} \cdot \overline{\mathrm{Z}}
$$

Where, \bar{Z} is indecating the opposite character of Z (atomic Number), for example, one is proton and other is electron. Every element has its own atomic weight. Therefore, if $\mathrm{M}^{\mathrm{W}} \cdot \mathrm{r}_{2}, r_{1}$ represents the atomic weight (W) with relative numbers r_{2}, r_{1}, then the above process will able to produce neutron numbers from the relation of $M^{W} . r_{2}, r_{1}$ and $M^{-Z} .-r^{\prime}{ }_{2}$, $-r^{\prime}{ }_{1}$ of same atomic number and relative number of same atomic weight (W) of element with matter and antimatter and after reaction of matter antimatter, number of proton and electron will produce.

$$
\begin{equation*}
\mathrm{M}^{\mathrm{W}} . \mathrm{r}_{2}, \mathrm{r}_{1} \times \mathrm{M}^{-\mathrm{Z}} .-\mathrm{r}_{2}^{\prime},-\mathrm{r}_{1}^{\prime} \rightarrow \mathrm{M}^{\mathrm{W}-\mathrm{Z}} \cdot\left[\mathrm{r}_{2}-\left(-\mathrm{r}_{1}^{\prime}\right)\right],\left[\left(-\mathrm{r}_{2}^{\prime}\right)-\mathrm{r}_{1}\right] \rightarrow \mathrm{M}_{\mathrm{p}, \mathrm{e}}^{\mathrm{n}} \tag{J}
\end{equation*}
$$

Here, $\mathrm{n}=$ number of neutron $(\mathrm{W}-\mathrm{Z}), \mathrm{p}=$ proton $=\mathrm{e}=$ electron $=\mathrm{Z}=$ atomic number.

For examples:

1) Atomic weight of Hydrogen $(H)=1.0079$, atomic number $=1$ (odd number), relative number of Hydrogen $=2$, 1 , relative number of anti-element Hydrogen $=1,0$. Then,
$\mathrm{H}^{1}{ }_{2,1} \quad \mathrm{x} \quad \mathrm{H}^{-1}{ }_{1,0} \rightarrow \mathrm{H}^{1-1}{ }_{(2-1),(0-1)} \quad \rightarrow \mathrm{H}_{1,1^{-}}^{0}\left(\mathrm{H}^{0}\right.$ means number of neutron of Hydrogen $\left.=0\right)$
(Unstable) (Anti Hydrogen) (Stable Hydrogen) \rightarrow followed equation (J)
Number of proton (p) of Hydrogen = $1=$ number of electron $\left(\mathrm{e}^{-}\right)$.
2)Atomic weight of Calcium $(\mathrm{Ca})=40.08$, atomic number $=20$ (Even number), relative number of $\mathrm{Ca}=11,11$, relative number of anti-element $\mathrm{Ca}=-9,-9$. Then,
$\mathrm{Ca}^{40}{ }_{11,11} \times \mathrm{Ca}^{-20}{ }_{-9,-9} \rightarrow \mathrm{Ca}^{(40-20)}{ }_{[11-(-9)][-9-11]} \rightarrow \mathrm{Ca}^{20}{ }_{20,200^{-}}$
$\left(\mathrm{Ca}^{20}\right.$ means number of neutron of $\left.\mathrm{Ca}=20\right)$
(Unstable) (Anti Calcium) $\quad \mathrm{m}) \rightarrow$ followed equation (J)
Number of protons of Calcium $=20=$ number of electrons $=$ number of neutrons
3)Atomic weight of Niobium $(\mathrm{Nb})=92.9064$, atomic number $=41$, relative number of $\mathrm{Nb}=22,21$, relative number of antielement $=-20,-19$, therefore,
2)

$\mathrm{Nb}^{93}{ }_{22,21} \quad \mathrm{x} \quad \mathrm{Nb}^{-41}{ }_{-20,-19} \rightarrow \mathrm{Nb}^{(93-41)}{ }_{[22-(-19)][-20-21]} \rightarrow \mathrm{Nb}^{52}{ }_{41,41^{-}}$
Number of protons of Niobium $=41=$ number of electrons, number of neutrons $=52$
The relative numbers are listed here for all elements with number of neutrons with respect to atomic weight.
The relative numbers are also applicable to isotopic mass of elements by using same equation described above. The particles like all types of quarks will obey this law of couple system. An example is stated here for the support of principle of couple system. The couple system is applicable to decaying particles from one source to other two directions. An example given here splitting of particles in decay mode by coupling through couple system. The color code and black dots indicating the particle`s position \& splits to next decay position. Here we see, μ^{-}, v_{μ}^{-}both are negative in L.H.S. of couple shown in red box with negative of R.H.S. couple. The next step is $+\&+$ dot position of particles shown in green box.

Table. List of Elements with Atomic Numbers, Atomic weights, Relative Numbers of stable elements to follow the Equation, $\left.M^{W \cdot Z} \cdot\left[r_{2}-\left(-r_{1}^{\prime}\right)\right],\left[\left(-r_{2}^{\prime}\right)-r_{1}\right] \rightarrow M_{p, e}^{n}\right) \ldots \ldots .(\mathrm{J})$.

$\begin{aligned} & \text { At } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Sy } \\ & \text { mb } \\ & \text { ol } \end{aligned}$	Name	Atomic Weight including isotopic mass within $1^{\text {st }}$ bracket () of the elements \& corresponding relative numbers within $3^{\text {rd }}$ [] bracket. Here, Relative Numbers listed for stable elements only. For Example, $\mathrm{H}_{2,1}^{1} \mathrm{XH}^{-1}{ }_{1 \rho} \rightarrow \mathrm{H}^{1-1}{ }_{(2-1),(0-1)} \rightarrow \mathrm{H}_{1, \lambda^{-}}^{0}(\mathrm{p}=\mathrm{e}=1 \& \mathrm{n}=0)$ for Hydrogen.	No. of Neutron Ref: [3]
1	H	Hydrogen	1.008, (2.014102), (3.016049), [2,1 anti No. 1,0]	0
2	He	Helium	$4.002602(2),(3.016040),[2,2,0,0]$	2
3	Li	Lithium	$6.94,(6.015122), \quad[3,2,0,-1]$	4
4	Be	Beryllium	9.012182(3), [3, 3, -1, -1]	5
5	B	Boron	10.81, (10.012937), [4, 3, -1, -1]	6
6	C	Carbon	12.011, (13.003355), [4, 4, -2, -2]	6
7	N	Nitrogen	14.007, 15.000109), [5, 4, -2, -3]	7
8	0	Oxygen	15.999, (16.999132), (17.999160), [5, 5, -3, -3]	8
9	F	Fluorine	18.9984032(5), [6, 5, -3, -4]	10
10	Ne	Neon	20.1797(6), (20.993847), (21.991386), [6, 6, -4, -4]	10
11	Na	Sodium	$22.98976928(2), \quad[7,6,-4,-5]$	12
12	Mg	Magnesium	24.305, (24.985837), (25.982593) [7, 7, -5, -5]	12
13	AI	Aluminium	$26.9815386(8), \quad[8,7,-5,-6]$	14
14	Si	Silicon	28.085, (28.976495), [8, 8, -6, -6]	14

15	P	Phosphorus	$30.973762(2),[9,8,-7,-6]$	16
16	S	Sulfur	32.06, (32.971458, [9, 9, -7,-7]	16
17	Cl	Chlorine	35.45, [10, 9, -7, -8]	18
18	Ar	Argon	$39.948(1),(37.962732), \quad[10,10,-8,-8]$	22
19	K	Pot assium	$39.0983(1),(39.963999),(40.961826),[11,10,-8,-9]$	21
20	Ca	Calcium	40.078(4), (42.958767), (43.955481), [11, 11, -9, -9]	20
21	Sc	Scandium	44.955912 (6), [12, 11, -9, -10]	24
22	Ti	Titanium	47.867(1), (48.947871), [12, 12, -10, -10]	26
23	V	Vanadium	50.9415(1), (49.947163), [13, 12, -10, -11]	28
24	Cr	Chromium	$51.9961(6)$, (52.940654), [13, 13, -11, -11]	28
25	Mn	Manganese	$54.938045(5), \quad[14,13,-11,-12]$	30
26	Fe	Iron	$55.845(2),(56.935399),[14,14,-12,-12]$	30
27	Co	Cobalt	58.933195(5), [15, 14, -12,-13]	31
28	Ni	Nickel	$58.6934(4),(57.935348),(59.930791),[15,15,-13,-13]$	30
29	Cu	Copper	63.546(3), (64.927794), [16, 15, -13, -14]	35
30	Zn	Zinc	$65.38(2),(63.929147),(65.926037),(66.927131),[16,16,-14,-14]$	35
31	Ga	Gallium	$69.723(1),(68.925581),(70.924705),[17,16,-14,-15]$	39
32	Ge	Germanium	72.630(8), (69.924250), (72.923450), [17, 17, -15,-15]	41
33	As	Arsenic	$74.92160(2),[18,17,-15,-16]$	42
34	Se	Selenium	78.96 (3), (77.91310), (79.916522), [18, 18, -16, -16]	45
35	Br	Bromine	79.904, (78.918338), (80.916291), [19, 18, -16,-17]	45
36	Kr	Krypton	$83.798(2),(81.913485),(93.911507),(85.910610),[19,19,-17,-17]$	48
37	Rb	Rubidium	$85.4678(3),(86.909183),[20,19,-17,-18]$	48
38	Sr	Strontium	87.62(1), (86.908879), [20, 20, -18, -18]	50
39	Y	Yttrium	$88.90585(2)$, [21, 20, -18, -19]	50
40	Zr	Zirconium	91.224(2), (89.904704), (91.905040),(93.906316),[21, 21,-19,-19]	51
41	Nb	Niobium	92.90638(2), [22, 21, -19, -20]	52
42	Mo	M olybdenum	95.96(2),(91.908810),(94.905841), (97.905408),[22, 22, -20.-20]	54
43	Tc	Technetium	[97], [23, 22, -20, -21]	55
44	Ru	Ruthenium	101.07(2), (101.904350), [23, 23, -21,-21]	57
45	Rh	Rhodium	102.90550(2), [24, 23, -21,-22]	58
46	Pd	Palladium	106.42(1), (104.905084), (107.903894), [24, 24, -22,-22]	60
47	Ag	Silver	107.8682(2), (106.905093), (108.904756), [25, 24, -22, -23]	61
48	Cd	Cadmium	112.411(8), (109.903008), (110.904182), [25, 25, -23,-23]	64
15	P	Phosphorus	30.973762(2), [9, 8, -7, -6]	16
16	S	Sulfur	32.06, (32.971458, [9, 9, -7,-7]	16
17	Cl	Chlorine	35.45, [10, 9, -7, -8]	18
18	Ar	Argon	39.948(1), (37.962732), [10, 10, -8, -8]	22
19	K	Potassium	$39.0983(1), \quad(39.963999),(40.961826),[11,10,-8,-9]$	21
20	Ca	Calcium	$40.078(4),(42.958767),(43.955481)$, [11, 11, -9, -9]	20
21	Sc	Scandium	$44.955912(6), \quad[12,11,-9,-10]$	24
22	Ti	Titanium	$47.867(1),(48.947871),[12,12,-10,-10]$	26
23	V	Vanadium	50.9415(1), (49.947163), [13, 12, -10, -11]	28
24	Cr	Chromium	$51.9961(6)$, (52.940654$),$ [13, 13, -11, -11]	28
25	Mn	M anganese	$54.938045(5), \quad[14,13,-11,-12]$	30
26	Fe	Iron	$55.845(2),(56.935399),[14,14,-12,-12]$	30
27	Co	Cobalt	$58.933195(5),[15,14,-12,-13]$	31
28	Ni	Nickel	58.6934(4), (57.935348), (59.930791), [15, 15, -13, -13]	30
29	Cu	Copper	$63.546(3),(64.927794),[16,15,-13,-14]$	35
30	Zn	Zinc	$65.38(2),(63.929147),(65.926037),(66.927131),[16,16,-14,-14]$	35

31	Ga	Gallium	$69.723(1))_{(}(68.925581)_{r}(70.924705)_{y}[17,16,-14,-15]$	39
32	Ge	Germanium	$72.630(8),(69.924250),(72.923450),[17,17,-15,-15]$	41
33	As	Arsenic	74.92160(2) [18, 17, -15,-16]	42
34	Se	Selenium	78.96(3), (77.91310), (79.916522), [18, 18, -16, -16]	45
35	Br	Bromine	79.904, (78.918338), (80.916291), [19, 18, -16,-17]	45
36	Kr	Krypton	$83.798(2),(81.913485),(93.911507),(85.910610)$ [19, 19,-17, -17]	48
37	Rb	Rubidium	$85.4678(3){ }_{2}(86.909183)$ [$\left.20,19,-17,-18\right]$	48
38	Sr	Strontium	87.62(1), (86.908879), [20, 20, -18,-18]	50
39	Y	Yttrium	$88.90585(2),[21,20,-18,-19]$	50
40	Zr	Zirconium	91.224(2), (89.904704) (91.905040), (93.906316), [21, 21, -19,-19]	51
41	Nb	Niobium	92.90638(2) [22, 21, -19, -20]	52
42	Mo	Molybdenum	$95.96(2),(91.908810),(94.905841),(97.905408),[22,22,-20 .-20]$	54
43	Tc	Technetium	[97], [23, 22, -20, -21]	55
44	Ru	Ruthenium	101.07(2), (101.904350), [23, 23, -21, -21]	57
45	Rh	Rhodium	102.90550(2), [24, 23, -21,-22]	58
46	Pd	Palladium	106.42(1), (104.905084), (107.903894), [24, 24, -22,-22]	60
47	Ag	Silver	107.8682(2), (106.905093), (108.904756), [25, 24, -22, -23]	61
48	Cd	Cadmium	112.411(8) $(109.903008)_{r}(110.904182)_{l}[25,25,-23,-23]$	64
49	In	Indium	114.818(1) (112.904061) $[26,25,-23,-24]$	66
50	Sn	Tin	118.710(7) (115.901744), (117.901608), [26, 26, -24, -24]	69
51	Sb	Ant imony	121.760(1), (120.903818), (122.904216), [27, 26, -24, -25]	71
52	Te	Tellurium	127.60(3), (122.904273), (125.903308), [27,27, -25,-25]	76
53	1	lodine	126.90447(3), [28, 27, -25,-26]	74
54	Xe	Xenon	131.293(6) , 128.904779$)_{,}(130.905082),[28,28,-26,-26]$	77
55	C 5	Caesium	132.9054519(2), [29, 28, -26,-27]	78
56	Ba	Barium	137.327(7), (135.904570), (137.905241), [29, 29, -27,-27]	81
57	La	Lanthanum	138.90547(7), (137.907107), (138.906348) [$30,29,-27,-28]$	82
58	Ce	Cerium	140.116(1), (141.909240), [30,30, -28, -28]	82
59	Pr	Praseodymium	140.90765(2) [31, 30, -28,-29]	82
60	Nd	Neodymium	144.242(3) , (141.907719), (144.912569), [31, 31, -29,-29]	84
61	Pm	Promethium	[145], [32, 31, -29, -30]	84
62	Sm	Samarium	$150.36(2)(146.914893),(141.917180),[32,32,-30,-30]$	88
63	Eu	Europium	151.964(1) , 150.919846$)_{r}(152.921226)_{,}[33,32,-30,-31]$	89
64	Gd	Gadolinium	$157.25(3),(151.919788),(155.922120),[33,33,-31,-31]$	93
65	Tb	Terbium	158.92535(2) $[34,33,-31,-32]$	94
66	DV	Dysprosium	162.500(1), (155.924278), (162.928728), [34, 34, -32, -32]	97
67	Ho	Holmium	164.93032(2), [35, 34, -32, -33]	98
68	Er	Erbium	$167.259(3)_{r}(165.930290)_{r}(167.932368)$ [35, 35, -33, -33]	99
69	Tm	Thulium	168.93421(2) [$36,35,-33,-34]$	100
70	Yb	Ytterbium	173.054(5), (171.936378), (173.938858), [36, 36, -34, -34]	103
71	Lu	Lutetium	174.9668(1) , (175.942682), [37, 36, -34, -35]	104
72	Hf	Hafnium	178.49(2), (173.940040), (178.9 45815), [37, 37, -35, -35]	106
73	Ta	Tantalum	180.94788(2) , [38, 37, -35, -36]	108
74	W	Tungsten	183.84(1), (181.948206),(185.954362), [38,38, $-36,-36]$	110
75	Re	Rhenium	$186.207(1)$, 184.952956) (186.955751), [39, 38, -36, -37]	111
76	Os	Osmium	190.23(3), (191.961479), [39, 39, -37, -37]	114
77	Ir	Iridium	192.217(3) (190.960591), (192.962924) [40, 39, -37, -38]	115
78	Pt	Plat inum	195.084(9), (189.959930), (193.962664), [40,40, -38,-38]	117
79	Au	Gold	196.966569(4), [41, 40, -38,-39]	118

80	Hg	Mercury	$200.592(3),(198.968262),(199.968309),[41,41,-39,-39]$	121
81	Tl	Thallium	204.38, (202.972329), (204.974412) [42, 41, -39, -40]	123
82	Pb	Lead	$207.2(1),(203.973029),(205.974449),[42,42,-40,40]$	125
83	Bi	Bismuth	208.98040(1), [43, 42, -40,-41]	126
84	Po	Polonium	[209], [43, 43, -41, -41]	125
85	At	Astatine	[210], [44, 43, -41, -42]	125
86	Rn	Radon	[222], [44, 44, -42, -42]	136
87	Fr	Francium	[223], [45, 44, -42, -43]	136
88	Ra	Radium	[226], [45, 45, -43, -43]	13.8
89	Ac	Actinium	[227], [46, 45, -43, -44]	138
90	Th	Thorium	232.03806(2), [46, 46, -44, -44]	142
91	Pa	Protactinium	231.03588(2), [47, 46, -44, -45]	140
92	U	Uranium	238.02891(3), (234.040946), (235.043923), [47, 47, -45, -45]	146
93	Np	Neptunium	$[237],(237.048167),[48,47,-45,-46]$	144
94	Pu	Plutonium	[244], (244.064198), [48, 48, -46, -46]	150
95	Am	Americium	[243], (243.061373), [49, 48, -46, -47]	Number of Neutron \& Mass Number
96	Cm	Curium	[247], (247.070347), [49, 49, -47, -47]	151,247
97	Bk	Berkelium	[247], (247.070299), [50, 49, -47,-48]	150,247
98	Cf	Californium	[251], (251.079580), [50, 50, -48, -48]	153,251
99	Es	Einst einium	[252], (252.082972), [51, 50, -48, -49]	153,252
100	Fm	Fermium	[257], (257.095099), [51, 51, -49, -49]	157,257
101	Md	Mendelevium	[258], (258.098425), [52, 51, -49, -50]	157,258
102	No	Nobelium	[259], (259.101024), [52, 52, -50, -50]	157,259
103	Lr	Lawrencium	[262], (262.109692), [53, 52, -50, -51]	159,262
104	Rff	Rutherfordum	[267], (263.118313), [53, 53, -51, -5 1]	157,261
105	Db	Dubnium	[270], (262.011437), [54, 53, -51, -52]	N/A(157)
106	\$g	\$eaborgium	[271], (266.012238), [54, 54, -52, -52]	157,263
107	Bh	Bohrium	[270], (264.012496), [55, 54, -52,-53]	157,264
108	H s	Has sium	[277], (269,001341), [55, 55, -53,-53]	161,269
109	Mt	M eitnerium	[276], (268.001388), [56, 55, -53, -54]	159,268
110	Ds	Darmstadtium	[281], (272.001463), [56, 56, -54, -54]	162,272
111	Re	Roentrenium	[2821.(272.001535). [57.56. -54.-55]	162.273
112	Cn	Copernicium	[285], [57, 57, -55, -55]	165,277
113	Uut	Ununtrium	[285], (284*), [58, 57, 5 55, -56] [*Ref.http://www.chem.qmul. ac.uk/iupac/AtW t/tablehtml, by G.P.Moss]	173,286
114	FI	Flerovium	[289], (289), [58, 58, -56, -56]	175,289
115	Uup	Ununpentium	[289], [288*], [59, 58, -56, -57] [*Ref.http://www.chem.qmul. ac.ul/iupac/AtWt/tablehtml by G.P.Moss]	173,288
116	Lv	Livermorium	[293], 293, [289], [59, 59, -57, -57]	176,292
117	Uus	Ununseptium	[294],(294*), [60, 59, -57,-58] [*Ref.http://www.chem.qmul. ac.ul/iupac/AtWt/table.html, by G.P.Moss]	175,292
118	Uuo	Ununoctium	[294], [60, 60, -58, 58]	175,293

The $\Lambda^{+}{ }_{c}$ particle tends to p particle in + direction shown in a part of reaction in L.H.S. couple from the position of $\Lambda_{b}{ }^{0}$ particle which maintained a relation to relative particles as "Relative Number" in couple system. Thus all particles are related to each other. At the time of splitting, the particles obeying the principle of couple system shown here in this figure as "A part of reaction".

On the other hand, the particle, X_{b} also proceeding to next path from the original point PV and producing a couple format indicated by arrow sign. In between two diagram of LHCb, the Couple Figure shown as dot mark with $+\&-$ sign. The $27^{\text {th }}$ July, 2015 Experimental figure of LHCb described as "quark coupling strength $\left|V_{u b}\right|$ using baryonic decays"[4]. Therefore, it proves that the property of couple system is meaningful and it require more searching to progress in front to find more unknown phenomena.

Conclusion

In this way it is possible to determine the number of protons, electrons, neutrons of any element by using relative numbers.
This is very interesting that it shows the relation between particle to particle in simple way and also indicating that in what way matters created with changing its characteristics. The relative numbers keep relation in forming Hydrogen to all elements stage by stage. This idea is completely new and covering traditional experimental views perfectly. If we search more, we can get lot of information about the birth of the universe. When the scientists will search for the real cause of birth of the universe, then this new theory may give perfect way of light in this field.

REFERENCES

Determination of the quark coupling strength $\left|V_{u b}\right|$ using baryonic decays, Nature Physics (2015) doi:10.1038/nphys 3415 Received 08 April 2015 Accepted 25 June 2015 Published online 27 July 2015.
Nirmalendu Das, 07, July 2015. A couple systems to find the different series of Pi. ID Number: IGM 1332/E 15, International Journal of Mechanical Engineering and Information Technology. (IJMEIT), ISSN No: 2348-196X, Volume 03, Issue, Page No: 1437 - 1445.
Nirmalendu Das, The series of $1 / 2$ and other applications by using the Relative Numbers which yielded from Couple Systems. ID Number - IJOARM-3597, Volume 3, Issue 7, July 2015 Edition, IJOARM International Journal of Journal of Mathematics, Volume 3, Issue 7, July 2015 Edition.
Number of Protons and Neutrons, www.elementalmatter.info/number-protons-neutrons.htm, Number of Protons and Neutrons - An Atom determines an Element The purest type of atom is called an element. Atoms are composed of three kinds of smaller particles.

[^0]: *Corresponding author: Nirmalendu Das,
 Advanced Study and Research in Mathematical Science (UKS), Old Post Office line, Jalpaiguri, Life Member (2): Indian Science Congress Association, India.

