

Available online at http://www.ijirr.com

International Journal of Information Research and Review Vol. 2, Issue, 08, pp.1028-1030, August, 2015

Full Length Research Paper

STUDY OF SIGNIFICANCE OF ESTIMATION OF LIPID PROFILE IN PATIENT WITH ACUTE MYOCARDIAL INFARCTION

^{*}Dr. Venkateshwarlu, M. and ²Dr.Chelmakuri Gayathri

Department of Biochemistry, Rajiv Gandhi Institute of Biochemistry, Adilabad, India

*Corresponding Author

Received 12th July 2015; Published 31st August 2015

Abstract

Acute myocardial infarction is one of the important reasons of death and unhealthiness in the world. Acute Myocardial infarction signifies sudden necrosis or death of a portion of cardiac muscle due to inadequate blood supply. The present study was undertaken to investigate the changes in serum lipids in patients with acute myocardial infarction in the Department of Biochemistry, Government General Hospital, Rajiv Gandhi Institute of Medical Sciences, Adilabad. The levels of lipid profile were significantly changed in the acute myocardial infarction patients. Acute myocardial infarction patients had significantly higher levels of total cholesterol, LDL-cholesterol, TG, and lower level of HDL-cholesterol, as compared to the control subjects. We found a significant association of lipid profiles with acute myocardial infarction. Reduced serum HDL-cholesterol and increased Serum LDL, Serum TG, in our study subjects may be the effective reasonable lipid disorders in AMI patients.

Keywords: Acute Myocardial Infarction (AMI), Lipid Profile, LDL and HDL Cholesterol.

Copyright © Dr. Venkateshwarlu and Dr.Chelmakuri Gayathri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To cite this paper: Dr. Venkateshwarlu, M. and Dr.Chelmakuri Gayathri 2015. Study of significance of lipid profile estimation in patient with acute myocardial infarction, *International Journal of Information Research and Review*. Vol. 2, Issue, 08, pp.1028-1030, August, 2015.

INTRODUCTION

Acute Myocardial Infarction (AMI) is one of the most common diseases among the developing countries. MI is defined as prolonged chest pain and is diagnosed as acute mvocardial infarction clinical examination. on electrocardiographic changes and laboratory basis (Sathisa TG et al 2011). The mortality rate of MI is approximately 30% and for every 1 in 25 patients who survive the initial hospitalization, dies in the first year after AMI. Indians are four time more prone to AMI as compared to the people of other countries due to a combination of the genetic and lifestyle factors that promote metabolic dysfunction. The risk of cardiovascular disease is predicted by various factors such as age, sex, smoking, hypertension and dyslipidemia (Sathisa TG et al 2011).Aute myocardial infarction also known as Heart attack is the important form of ischaemic heart disease in industrial nations and is the leading cause of death in U.K. Elevated serum triglyceride, total cholesterol and LDL cholesterol are well established risk factor, for cardiovascular disease (ADA, 2001, Kritchevsky D et al 1956, Schaefer EJ, 2002, WHO-1990, Yu-Poth S, et al 1999). A low serum HDL cholesterol level is therefore, thought to be an independent cardiovascular risk factor that leads to the development of atherosclerosis and related cardiovascular events (Robert H, 2004).

Many large scale studies have shown a high correlation between total plasma cholesterol and LDL levels and the severity of atherosclerosis as judged by the mortality rate from ischemic heart disease (Bibi Kulsoom, Nazrul Hasnain, 2006). This is why; it was considered a consequence of hyperlipidemia, especially hypercholesterolemia leads to AMI. It is well established that a western lifestyle, a high fat, high calorie diet, physical inactivity and tobacco smoking plays a major role in the causes and risk of MI. The biochemical or physiological consequences of this lifestyle include elevated blood pressure, elevated plasma cholesterol, low plasma high density lipoprotein (HDL) cholesterol, elevated plasma TG, diabetes, obesity and thrombogenic factors (Isles CG, Paterson JR, 2000). Several epidemiologic studies have shown that the ratio of total cholesterol to HDL cholesterol and LDL cholesterol to HDL cholesterol also can be used as predictors of MI (Norrapol Wattanasuwan, 2001). The present study was undertaken to investigate the changes in serum lipids and in Patients with acute myocardial infarction.

MATERIALS AND METHODS

The present research was carried out in the Department of Biochemistry, Rajiv Gandhi Institute of Medical Sciences, Adilabad.

The Institutional Ethical Committee clearance was obtained and utmost care was taken during experimental procedure according to the Declaration of Helsinki 1975. The study was carried out in 25 patients (20 male and 5 female) aged between 40 to 70 years, admitted to our intensive care unit with acute myocardial infarction. The results were compared with healthy controls 25 (16 males and 9 females). Increased total LDH level was taken as criteria for selection of patients. All patients were under the strict supervision of medical professionals during this period. The patients having history of any heart disease, hypertension, thyroid dysfunction, diabetes mellitus were excluded from the study. Screening with complete blood count, ESR, fasting blood glucose was performed and if found abnormal, were excluded from the study. After obtaining a written consent from all the participants, total 5ml blood was withdrawn aseptically from the antecubital vein from each subject in plain bulb after 12 hrs overnight fast. The samples were centrifuged at 3000 rpm for 10 min to separate. The separated serum was collected in polythene tube with cork and stored at -20C. The serum with no sign of hemolysis was used for analysis of all the parameters. Fasting levels of serum total cholesterol, high density Lipoprotein (HDL) cholesterol, low density Lipoprotein (LDL) cholesterol, Triglyceride (TG) were measured by enzymatic methods using Kits from AGAPPE DIAGNOSTICS, Ltd. Kerala. The statistical analysis was carried out by using the SPSS (Statistical Package for Social Sciences) software. The Student't' test was applied for the statistical analysis and the results were expressed in mean \pm SD, p values (p < 0.001) were considered as highly significant.

RESULTS

The serum of cholesterol, serum triglyceride, and LDL significant increase (P < 0.05) in patients in comparison to controls. While serum HDL recorded significant decreases (P < 0.01) in patients in comparison to controls (Table 1).

 Table 1. Statistical comparison was done between Acute MI patients and control group

Parameter	Control Group (n= 25)	Acute MI patients $(n=25)$
	Mean \pm SD	Mean \pm SD
Serum Cholesterol	176.92 ± 22.84	$200.2 \pm 29.69 *$
Serum TG	108.2 ± 27.82	$152.32 \pm 36.73*$
Serum HDL	43.96 ± 2.58	$42.08 \pm 3.29*$
Serum LDL	119.16 ± 25.54	$138.08 \pm 29.09*$

DISCUSSION

In our present study serum triglyceride levels significantly increase in AMI patients when compared with control subjects. There is different mechanism about elevation of TG after MI. it is reported that elevated TG levels may depends on genetic and nutritional basis. TG change level may because inherited abnormality of very low density lipoprotein. It may happen because of increased flowing of fatty acids and impaired elimination of VLDL from the plasma. Our results are supported by other researchers (Bibi Kulsoom, Nazrul Hasnain 2006, Ahmad Shirafkan *et al.* 2012, Hamsten *et al.*, 1986, Toth, 2004).

LDL cholesterol has found to be elevated significantly when compared with controls. LDL carries the most of the cholesterol in the plasma and increasing of LDL depends on increasing of total cholesterol [Bibi Kulsoom *et al.*, 2006, Isles CG *et al.*, 2000 and Ahmad Shirafkan *et al.*, 2012]. Low HDL cholesterol is shown to be associated with higher prevalence and incidence of coronary artery diseases [Bibi Kulsoom *et al.*, 2006, Vetter NJ *et al.*, 1974]. Several studies have supported that the ratio of LDL cholesterol/ HDL cholesterol shows the atherosclerotic injuries of the wall of the vessels (Ahmad Shirafkan *et al* 2012). We found the significant increase in the ratio of LDL cholesterol level after acute MI. Our study has been supported by latest studies (Ahmad Shirafkan *et al* 2012, Vetter *et al.*, 1974, Sandkamp, *et al.*, 1990).

Conclusion

M.I is one of the major health problems of our society. It is one of the leading causes of death throughout the world. MI has plenty of factors; one of the factors is dyslipoprotinemias. In our study mean serum levels of total cholesterol, TG, LDL-C have been increased significantly, compared to control. Mean serum HDL-C level is decreased significantly, compared to control. Our study shows that altered lipid levels are playing a significant role in the Causation of MI. All the people should undergo lipid profile evaluation regularly to decrease the incidence, morbidity and mortality from the disease.

REFERENCES

- Ahmad Shirafkan, Abdoljalal Marjani, Farhad Zaker. 2012. Serum lipid profiles in acute myocardial infarction patients in Gorgan. *Biomedical Research*, 23(1): 119-124.
- American Diabetes Association, 2001. Clinical recommendations: Diabetic nephropathy. Diabetes Care 2001; 24(1):69-72.
- Bibi Kulsoom, Nazrul Hasnain, 2006. Association of serum C reactive protein and LDL: HDL with Myocardial Infarction. J. Pak. Med. Asso., 56(7); 318-322
- Buring, J.E., O'Cnnor, G.T., Goldhaber, S.Z. *et al.* 1992. Decreased LDH2 and LDH3 cholesterol, Apo A-I, Apo A-II and increased risk of myocardial infarction. Circulation; 85:22-29.
- Expert Panel on Detection, 2001. Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). J. Am. Med. Assoc., 285:2486-97.
- Hamsten, A., Walldius, G. Szamosi, A. *et al.* 1986. Relationship of angiographic ally defined coronary artery disease to serum lipoproteins and apolipoproteins in young survivors of myocardial infarction. Circulation, 73:1097-1110.
- Isles, C.G. and Paterson, J.R. 2000. Identifying patients at risk for coronary heart disease: implications from trials of lipid lowering drug therapy. Q J med; 93:567-574.
- Kritchevsky, D., Moyer, A.W. and Tesar, W.C. 1956. Cholesterol vehicle in experimental atherosclerosis. II. Influence of unsaturation. *Am. J. Physiol*, 185:279-280.

- Norrapol Wattanasuwan, Ijaz A. Khan, Ramesh M. Gowda 2001. Effect of Acute Myocardial Infarction on Cholesterol Ratios. Chest 120:1196-1199.
- Robert H. Glew, Henry Okolie, Michael Crossey 2004. Serum Lipid Profiles and Homocysteine Levels in Adults with Stroke or Myocardial Infarction in the Town of Gombe in Northern Nigeria. J Health Popul Nutr Dec; 22(4):341-347.
- Sathisa, T.G., manjunatha Goud, B.K. and Avinash, S.S. 2011. Microalbunuria in Non Diabetic, Non Hypertensive Myocardial Infarction in South Indian Patients With Relation To Lipid Profile and Cardiac Markers. J of clinical and Diagnostic Research; 5(6):1158-1160.
- Sandkamp, M., Funke, H. and Schulte, H. 1990. Lipoprotein (a) is an independent risk factor for myocardial infarction. Clin Chem; 36: 20-23.
- Schaefer, E.J. 2002. Lipoproteins, nutrition, and heart disease. Am J Clin Nutr; 75:191-212. Toth PP. (2004). High density lipoprotein and cardiovascular risk. *Circulation*; 109; 1809-1812.

- Vetter, N.J., Adams, W., Strange, R.C. and Oliver, M.F. 1974. Initial metabolic and hormonal response to acute myocardial infarction. Lancet; 284-289.
- World Health Organization. 1990. Diet, nutrition, and the prevention of chronic diseases; report of a WHO Study Group on Diet, Nutrition and Prevention of Noncommunicable Diseases. Geneva: *World Health Organization*, 54-8. (Technical report series no. 797).
- Yu-Poth, S., Zhao, G. and Etherton, T. 1999. Effects of National Cholesterol Educations Program's Step I and Step II dietary intervention programs on cardiovascular disease risk factors: a meta-analysis. *Am. J. Clin. Nutr.*, 69:632-646.