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Abstract 
 
Starting from Zakharov integral equation, two coupled fourth order nonlinear evolution equations have been derived in deep 
water for two gravity wave packets propagating in the same direction in the presence of wind blowing over water. On the basis of 
these evolution equations, the stability analysis is made for a uniform gravity wave train in the presence of another wave train 
having the same group velocity. Graphs are plotted for growth rate of instability against the perturbation wave number for 
different values of the amplitudes of two wave trains and for different values of wind velocity. 
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INTRODUCTION 
 
One approach to studying the stability of finite amplitude surface gravity waves in deep water is through the application of the 
lowest order nonlinear evolution equation, which is the nonlinear Schrodinger equation. Zakharov's (1968) study is along this line, 
allowing for finite amplitude wave trains to be subjected to modulational perturbations in two horizontal directions both along and 
perpendicular to the direction of the wave train. Davey and Stewartson (Davey and Stewartson, 1974) made an extension of this to 
water of finite depth. Further extensions of this were made by Djordjevic and Redekopp (1977) to include capillarity and by Das 
(1986) to include density stratification. 
 
For small amplitude, ka<0.1 the predictions from the nonlinear Schrodinger equation when compared with Longuet-Higgin's 
(1978) exact results are fairly accurate. 
 
But for  ka>0.15 the predictions from the nonlinear Schrodinger equation do not agree with the exact results of Longuet-Higgins 
(1978). Dysthe (1979) has shown that a stability analysis made  from a fourth-order nonlinear evolution equation that is one order 
higher than the nonlinear Schrodinger equation gives results consistent with the exact  results of Longuet-Higgin's (1978) and with 
the experimental results of Benjamin--Feir (1967) for wave steepness up to 0.25. From this fourth-order evolution equation 
Janssen (1983) has elaborated on the Dysthe (1979) approach by investigating the effect of wave-induced flow on the long time 
behavior of Benjamin-Feir (1967) instability and has also applied this equation to the homogeneous random field of gravity waves 
and obtained the nonlinear energy transfer function found by Dungey and Hui (1979) Stiassnie (1984) has shown that Zakharov's 
(1968) integral equation yields the modified or fourth order nonlinear Schrodinger equation for the particular case of narrow 
spectrum.  
 
Hogan (1985) has considered the stability of a train of nonlinear capillary-gravity waves on the surface of an ideal fluid of infinite 
depth. He derived from the Zakharov's (1968) equation under the assumption of a narrow band of waves and including the full 
from of interaction coefficient for capillary-gravity waves, an evolution equation for the wave envelope that is correct to fourth 
order in the wave steepness. Fourth order nonlinear evolution equation for deep water surface-gravity waves in different contexts 
and stability analysis made from them were derived by Dhar and Das (1990, 1994), Debsarma and Das (2002), Hara and Mei 
(1991, 1994), Bhattacharyya and Das (1997). What has been said in the previous paragraphs is for the evolution equation of a 
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single wave packet. It is of considerable importance to extend the stability analysis of a wave packet in the presence of another 
wave packet. Stability analysis of a surface gravity wave in deep water in the presence of a second wave has been made by Roskes 
(1976) based on the lowest-order nonlinear Schrodinger equations. In his investigation modulational  perturbation is restricted to a 
direction along which group velocity projections of the two waves overlap   and it is argued that the modulation will grow  at a 

faster rate along this direction when 0<   < 70.5
, where   is the angle between the two  propagation directions of two waves.  

 
Dhar and Das (1991) made the same analysis of Roskes (1976) making use of two coupled fourth-order  nonlinear evolution 
equations that they derived for two wave packets having the same characteristic wave number. The same analysis including the 
effect of capillarity was later made by Dhar and Das (1993) using the multiple scale method. They observed significant deviations 
from the results obtained from coupled cubic nonlinear Schrodinger equations. Pierce and Knobloch (1994) derived third order 
evolution equations for counter propagating capillary- gravity wave trains having equal characteristic wave number and frequency 
propagating over finite depth water. The resulting equations are asymptotically exact and nonlocal.  In the present paper two 
coupled fourth order nonlinear evolution equations are derived in deep water for two gravity wave packets propagating in the same 
direction with unequal wave numbers in the presence of wind flowing over water. Here we have used a general method, based on 
Zakharov integral equation.  
 
Unlike Dhar and Das (1991, 1993), the evolution equations are derived here using Zakharov integral equation. Stiassnie (1984) 
and Hogan (1988) also used the Zakharov integral equation for the derivation of fourth order nonlinear evolution equations for a 
surface gravity wave packet and capillary-gravity wave packet respectively. In deriving the two coupled evolution equations, we 
make an extension of the paper by Dhar and Das (1991) who derived the fourth order nonlinear evolution equations for two 
gravity wave packets with equal wave numbers using multiple scale method. The expression for the change in phase speed for the 
case of gravity waves was first obtained by Longuet-Higgins and Phillips (1962) by the perturbation method. Onorato et al. (2006) 
also derived third-order evolution equations to study the problem of interaction of two wave systems in deep water with equal 
characteristic wave number and propagating in two different directions. They found that the introduction of a second wave results 
in an increase of the instability growth rates and causes enlargement of the instability region.  
 
In our paper the relative changes in phase speed of each uniform wave train in the presence of another one have been derived. On 
the basis of two coupled nonlinear Schrodinger equations, the stability analysis is made of a uniform gravity wave train in the 
presence of another uniform gravity wave train, when the group velocities of the two wave trains coincide. The instability 
condition and an expression for the growth rate of instability are then obtained. Stable-unstable regions of the second wave train 
have been plotted for different values of the first wave train and for different values of wind velocity. We have also plotted the 
growth rate of instability against perturbation wave number for different values of the amplitudes of two wave trains and for 
different values of wind velocity. 
 
Basic equations 
 
We take the common horizontal interface between water and air in the undisturbed state as z=0 plane. In the undisturbed state air 
flows over water with a velocity u in a direction that is taken as the x- axis. The equation of the common interface is taken as 

( , )z x t   at any time t in the perturbed state. 

 

The perturbed velocity potentials ( , , )x z t   and ( , , )x z t   of water and air respectively satisfy the following Laplace 

equations 
 

2 0             in      z        ……………………………………………………………………………………………. (1) 

 
2 0             in       z        ……………………………………………………………………………………………. (2) 

 
The kinematic boundary conditions to be satisfied at the interface are the following 
 

z t x x

      
 

   
                      at               z      ………………………………………………………………………… (3) 

 

u
z t x x x

        
  

    
        at               z 

   ……………………………………………………………………….  (4)
 

 
The condition of continuity of pressure at the interface is  given by 

2 21
(1 ) ( ) ( )

2 2
g u

t t x

   
     

   
       

  
      at               z 

    …………………...................................  (5)
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Where 








  is the ratio of densities of air to water and g  is the acceleration due to gravity. 

Finally the velocity potentials     and  should satisfy the following conditions at infinity 

 

0               as         z        …………………………………………………………………………………………….  (6) 

 

0              as         z        ……………………………………………………………………………………………..  (7)  

 
As the disturbance is assumed to be a progressive wave we look for solutions of the above equations in the following form 

 

*
00 1 2 1 2

0 0

[ exp ( ) exp ( )]mn mn
m n

G G G i m n G i m n   
 

 

        ………………………………………………..  (8)                      

 

where G  stands for  ,    and 1 1 1 1,k x t k x t       . In the above summation on the right hand side of equation 

(8),  ( , ) (0,0)m n  .  The Fourier coefficients 
* *

00, 00, , , ,mn mn mn mn        are functions of 1 1, ,z x x t t    and 

*
00, , ,mn mn    are functions of 1 1,x t .Here * denotes complex conjugate,   is a small ordering parameter measuring the 

weakness of wave steepness and , k  satisfy the following linear dispersion relation for gravity waves 

 
2 2 2(1 ) 2 (1 ) 0k u k u gk              ……………………………………………………………………………..  (9) 

 
Derivation of evolution equations 
 
The two coupled nonlinear evolution equations are derived here using Zakharov's integral equation which is given by 

 

*
1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

( , )
( , , , ) ( , ) ( , ) ( , )

( ) exp[ { ( ) ( ) ( ) ( )} ]

P k t
i k k k k P k t P k t P k t

t

k k k k i k k k k t dk dk dk    










      

      ………………………………..  (10) 

 

where ( , )P k t  is related is related to the to the free  surface elevation ( , )x t  by 

 

 

1

21 | |
( , ) ( , ) exp[ { . }] .

2 2 ( )

k
x t P k t i k x t c c dk

k
 

 





 
   

 
  ………………………………………………………  (11)     

 

In the above   ( , )x x y  is the horizontal spatial vector  ( , )k k l   is the wave vector, c.c. denotes complex conjugate and the 

kernel  1 2 3( , , , )T k k k k  is a scalar function used by Krasitskii (18). 
 

The linearized wave frequency  ( )k   connected to k   through the following linear dispersion relation 

given by 
1

1 12
2 22 2

| |
( ) | | [(1 ) | | ]

1

k
k k u g k u   



 
           

  ……………………………………………………………………  (12) 

 
A non zero contribution to the integral equation (10) can be obtained, when the following condition for four wave numbers is 
satisfied. 
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1 2 3 0k k k k      ……………………………………………………………………………………………………………  (13) 

 

Now we consider two narrow gravity wave packets centered around the wave vectors  ak  and called the first and  bk    second 

wave packet respectively. With    ak k    the condition (13) is satisfied for two waves with wave vectors  ak    and  bk  in three 

cases given by 1 2 3 1 3 2 1 2 3( ) , , , ( ) , , ( )b b a b a aa k k k k k k b k k k k k c k k k k          

 

For obtaining the evolution equation of the first wave packet we take ak k e   in equation (10) and introducing new variables    

1( , )Q e t    and  2 ( , )Q e t  defined by 

 

1

2

( , ) ( , ) exp[ { ( ) ( )} ]

( , ) ( , ) exp[ { ( ) ( )} ]

a a a

b b b

Q e t P k e t i k e k t

Q e t P k e t i k e k t

 

 

    

       ……………………………………………………………………... (14) 

Equation (10) can be written as 
 

1
1

*
1 2 3 2 1 2 2 1 3

1 2 3 1 2 3

( , )
( , )[ ( ) ( )]

( , , , ) ( , ) ( , ) ( , )

( )

a a

a b b a

Q e t
i Q e t k e k

t

T k e k e k e k e Q e t Q e t Q e t

e e e e de de de

 








  



    

   

    

*
1 2 3 1 1 1 2 2 3

1 2 3 1 2 3

( , , , ) ( , ) ( , ) ( , )

( )

a b a bT k e k e k e k e Q e t Q e t Q e t

e e e e de de de





    

   

    

     

*
1 2 3 1 1 1 2 1 3

1 2 3 1 2 3

( , , , ) ( , ) ( , ) ( , )

( )

a a a aT k e k e k e k e Q e t Q e t Q e t

e e e e de de de





    

   

     ………………………………………………..   (15) 

 

in which we replace 1 1 2 2 3 3, ,b b ak k e k k e k k e       for the first triple integral   

1 1 2 2 3 3, ,b a bk k e k k e k k e      for the second and  1 1 2 2 3 3, ,a a ak k e k k e k k e         finally  for the 

third.  
 

The surface elevations  1( , )x t  and 2 ( , )x t  for the first and second wave packets respectively for the new variables becomes  

 

1 1

1

4

1 1 1
2 22 2 2

1 1 1

1 1
( , ) exp [ . ( ) ]. ( , ) exp ( . )

2 2

| |
.

[ | | {(1 ) | | }]

( , ) exp[ { . ( ) }] .

a a

a

a a

x t i k x k t Q e t i e x

k e
de c c

u k e g u k e

x t i k x k t c c


 



  

 






 

 
  

 
      

  



  ……………………………………………………  (16) 
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2 2

1

4

1 1 1
2 22 2 2

2 2 2

1 1
( , ) exp [ . ( ) ]. ( , ) exp ( . )

2 2

| |
.

[ | | {(1 ) | | }]

( , ) exp[ { . ( ) }] .

b b

b

b b

x t i k x k t Q e t i e x

k e
de c c

u k e g u k e

x t i k x k t c c


 



  

 






 

 
  

 
      

  



  …………………………………………………...   (17) 

where        

1 1

2 2

1
( , ) ( , ) exp( . )

2

1
( , ) ( , ) exp( . )

2

x t e t ie x de

x t e t ie x de

 


 


















  …………………………………………………………………………..  (18) 

             

1

4
1

1 1 11

4
1

1
( , ) (1 ) ( , )

2

k
e t d e Q e t

d





   

and 

             

1

4
2

2 2 21

4
2

1
( , ) (1 ) ( , )

2

k
e t d e Q e t

d





   ……………………………………………………………………………  (19)              

            

Using  equations  (16) ,(18) and (19) we  have first evaluated the left hand side of equation (15) by setting 1 1( )k e k e x    in   

1( )k e    and  expanding in powers of   e    up to third degree, we get the following expression of left hand side of equation 

(15)  after evaluation of Fourier inversion integrals. We also set 1 ( 1, 2,3)ie e x i  in the arguments of  T   appearing on the 

right hand side of equation (15). Now we make Taylor expansions of them in powers of    1 ( 1, 2,3)e i    up to first degree in 

these variables in which we have used the following notations 
 

2 2

1 1

( )
( ), ( 1,2) , ,i i g

k d k
k i m n c

k dk

 
 


    

 

Now we introduce the following dimensionless variables 
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2
1 1 1 2 2 2 2 2, , , ,

k
k k x k x t t v u

g
                  in the expressions  of left hand and right side of the  reduced  

form of  equation (15).  Now deliting the primes and taking the Fourier inversion integral of expression of right hand side of the 
reduced form of equation (15) we get the following nonlinear evolution equation for the first wave packet in the presence of 
second wave packet. 
 

2 3
(1) (1) (1) (1) 2 * (1) *1 1 1 1 1

1 2 3 1 1 1 2 1 12 3

*
(1) 2 (1) * (1) * (1) *1 1

3 1 4 1 1 1 1 1 2 2 2 2 2

*
(1) * (1) (1)2 2

3 1 2 4 2 2 5 1 2

( )

(

i i i
t x x x x

i H i
x x x

i i H
x x x

    
       

 
          

 
        

     
     

     

  
       

  
  

  
*

2 )
 
  

 …………………………………………….  (20) 

where H  is the Hilbert transform operator given by 
 

1 ( )
( )H P d

x

 
 

 






   …………………………………………………………………………………………………….. (21)         

   

The coefficients 
(1) (1)( 1, 2,3), ( 1, 2,3,4)i ii i    and 

(1) ( 1, 2,3, 4,5)i i   appearing in equation (20) are given 

in the Appendix. In the absence of the second wave and for 0v   the coupled equations reduce to equation (14) of Stiassnie 

(25) for a single gravity wave train. Also in the absence of second wave, the equation (20) reduces to equation (34) of Dhar and 
Das (1990) for a single gravity wave train. Proceeding in the same way and making an interchange between the suffixes a’ and  b’ 
in the evolution equation (15), we obtain the following  nonlinear evolution equation for the second wave packet 
in the presence of first wave packet. 
 

2 3
(2) (2) (2) (2) 2 * (2) *2 2 2 2 2

1 2 3 1 2 2 2 2 22 3

*
(2) 2 (2) * (2) * (2) *2 2

3 2 4 2 2 2 1 2 1 1 2 1 1

*
(2) * (2) (2)1 1

3 2 1 4 2 1 5 2 1

( )

(

i i i
t x x x x

i H i
x x x

i i H
x x x

    
        

 
          

 
        

     
     

     

  
       

  
  

  
*

1 )
 
  

     ……………………………………... (22) 

 

where the coefficients  
(2) (2)( 1, 2,3), ( 1, 2,3, 4)i ii i     and  

(2) ( 1, 2,3, 4,5)i i      are given in the Appendix. 

 
Stability of finite amplitude wave trains 
 
The coupled equations (20) and (22) admit the following uniform wave train solutions 
 

1 01 1exp( )t       …………………………………………………………………………………………………………. (23) 

 

2 02 2exp( )t       ………………………………………………………………………………………………………… (24) 

 

where   01     and  02   are    real constants. Substituting equations (23) and (24) in equations (20) and (22) respectively, the 

amplitude dependent nonlinear frequency shifts of the two waves 1  and  2  are given by 

 
(1) 2 (1)

1 1 01 1 02

(2) 2 (2)
2 1 02 1 01

    

    

  

  
      …………………………………………………………………………………………………. (25) 
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The dimensionless wave numbers of the first and second wave are 1 2/k k and 1 respectively. Therefore the amplitude dependent 

shifts in phase speeds 1c and 2c of the two waves are the following 

 

 

(1) 2 (1)1
1 1 01 1 02

1 2

(2) 2 (2)
2 2 1 02 1 01

/
c m

k k

c m


   

    


   

    

   …………………………………………………………………………………… (26) 

 
To make a stability analysis we consider perturbations of the following form 

1 01 1 11 ( , ) exp( )t t       
 

 ………………………………………………………………………………………… (27) 

 

2 02 2 21 ( , ) exp( )t t       
 

 ………………………………………………………………………………………...  (28) 

 

where  1 2( , ), ( , )t t      are small perturbations of amplitudes 1  and   2  respectively. Substituting equations (27) and 

(28) in two evolution equations (20) and (22) respectively and then linearizing with respect to 1  and 2   we get the following 

two equations 
 

2 3
(1) (1) (1) (1) 2 * (1) *1 1 1 1 1

1 2 3 1 1 1 2 1 12 3

*
(1) 2 (1) * (1) * (1) *1 1

3 1 4 1 1 1 1 1 2 2 2 2 2

(1) * (1)2
3 1 2 4

( )

i i i
t x x x x

i H i
x x x

i i
x

    
        

 
            


    

                
      

                  

  


*
(1) *2

2 2 5 1 2 2( )H
x x


    

          

      …………………………………....... (29) 

2 3
(2) (2) (2) (2) 2 * (2) *2 2 2 2 2

1 2 3 1 2 2 2 2 22 3

*
(2) 2 (2) * (2) * (2) *2 2

3 2 4 2 2 2 1 2 1 1 2 1 1

(2) * (2)1
3 2 1 4

( )

i i i
t x x x x

i H i
x x x

i i
x

    
        

 
            


    

                
      

                  

  


*
(2) *1

2 1 5 2 1 1( )H
x x


    

          

 …………………………………….. (30) 

 

Now setting  
(1) (1)

1 r ii      and 
(2) (2)

2 r r     in the above two equations (29) and (30) respectively where 

(1) (2) (1) (2), , ,r i r i      are real and then assuming the  space time dependence of  
(1) (2) (1) (2), , ,r r i i     is of the form  

exp ( )i x t     and finally equating real and imaginary parts on both sides of each equation we get the four coupled 

equations. Neglecting higher order terms, the condition for the existence of a nontrivial solution to the above four algebraic 
equations gives the following nonlinear dispersion relation 
 

       2 2
1 1 1 2 2 2 1 1 2 1 1 2 2( ) ( )C PE C P E H C C F C F C                   ……………………  (31) 

 
where 
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 
 

(1) (1) 3 (1) 2 (1) 2 (2) (2) 2 (2) 2
1 1 3 2 01 2 02 2 1 2 02 2 01

(2) (2) (2) (1) (1) (2) (2) 3 2 2
1 2 1 1 4 1 3 4 01 02

(2) (1) (1) (1) (2) (1) (1) 3 2 2
2 2 1 1 4 1 3 4 01 02

(1) (2)
1 3 3 4

,

2 ( ) ( )

2 ( ) ( )

2

C C

F

F

H

             

         

         

  

      

   

   

  
 

(1) (2) 3 2 2
4 01 02

(1) (2) (1) (2) (1) (2) (1) (2) 3 2 2
2 2 2 1 1 1 5 1 5 01 024 ( )H

   

             

     …………………………...  (32) 

If we assume nearly equal group velocity of the two waves i.e., we assume 
(1) (2)

1 1   then it can be shown from two evolution 

equations that   
(1) 2

1 ( )O       and   
(2) 2

1 ( )O     , where    is a small ordering parameter, the smallness of  

01 02,   and . The nonlinear dispersion relation (31) at fourth order can be solved for the second wave train in the presence of 

the first wave train as follows: 
 

2(2) 2
1 2 2 1 1

(2) (1) (2) 2
2 2 2 1 1 2 1 1

( ) 0.5 /{( ) }

{ ( )} /{( ) }

C F C PE

P E H F C PE 

      

       
     ……………………………………………………… (33) 

 

where 
(1)  and 

(2)  are the solutions of the  dispersion relation (31) for the first and second wave trains at the lowest order 
given by 

 
1

( ) ( ) ( ) 2 ( ) 2 ( ) 2 2
1 2 2 1 0( 2 ) , ( 1,2)j j j j j

j j               ……………………………………………………… (34) 

The instability condition from equation (33) of the second wave train in the presence of first wave train is given by 
 

(2) (1) (2) 2
2 2 2 1 1 2 1 1{ ( )} /{( ) } 0P E H F C PE           ……………………………………………………………. (35) 

 
The above instability condition in the absence of first wave train becomes 
 

2 2 0P E       

that  is,    (2) 2 (2) 2 (2) (2) 2
2 2 1 1 022( | |) 0              ………………………………………………………………..   (36) 

 
which is similar to the instability condition of single wave packet. The instability  condition (36) is identical with the instability 

condition (57) of Dhar and Das (1990). Also for   0v      the above instability condition reduces to equation (3.8) of Dysthe 

(1979). 
 
Stable-unstable regions of the second wave train in the presence of first wave train are shown in figure 1 for different values of 
wind velocity. We have also plotted the marginal stability curves of the second wave train in the absence of the first wave train in 
figure 2 for different values of wind velocity v .  
 
It is found that the instability region of the second wave train expands due to the presence of the first wave train for fixed value of 
wind velocity. We also observe that the instability region is shortened slightly by the inclusion of fourth order terms. Further with 
the increase of wind velocity, the instability region is again shortened for fixed value of the amplitude of the first wave train. The 

growth rate of instability  GI  of the second wave train of longer wavelength is given by 

1
(2) (1) 2

2 1 1
2 2 (2) 2

2 1 1

( )

( )
G

H F
I P E

C PE

    
   

   
    ………………………………………………………………………………… (37) 

 

We have plotted in figures 3 and 4 the growth rate of instability  GI  of the second wave train against the perturbation wave 

number in the presence of first  wave train and for different values of wind velocity. We have plotted in figure 5 the similar curves 
in the absence of first wave train and also have plotted the corresponding curves that can be obtained from third order evolution 
equations. From these figures, it is found that the growth rate of instability of the second  wave train increases due to the presence 
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of the first wave train and it increases with the increase of the amplitude of the first wave train for fixed value of wind velocity. 
We also observe that the influence of fourth order terms is to increase the growth rate of instability. Further the growth rate of 
instability increases with the increase of wind velocity for fixed value of the amplitude of the first wave train. 
 

 
                                                                      
Fig. 1. Stable-unstable regions of the second wave train for some different values of dimensionless wind velocity v written on the graphs. 

Here 01 1 20.2, ( , ) (0.7132,0.3394)k k   .----------represents fourth order results and ............ represents third order results 

 

 
Fig. 2. Stable-unstable regions of the second wave train for some different values of dimensionless wind velocity v written on the graphs. 

Here 01 1 20, ( , ) (0.7132,0.3394)k k   .----------- represents fourth order results and ............... represents third order results 

 

 
 

Fig. 3. Growth rate of instability  GI   of the second wave train against the perturbation wave number  for some different values of 

dimensionless wind velocity v written on the graphs. Here 01 02 1 20.04, 0.1, ( , ) (0.7132,0.3394)k k    .---------------- 

represents fourth order results and ................ represents third order results 
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Fig. 4.  Growth rate of instability  GI   of the second wave train against the perturbation wave number   for some different values of 

dimensionless wind velocity v written on the graphs. Here 01 02 1 20.08, 0.1, ( , ) (0.7132,0.3394)k k    .----------------- 

represents fourth order results and .................. represents third order results 
 

        

Fig. 5. Growth rate of instability  GI   of the second wave train against the perturbation wave number   for some different values of 

dimensionless wind velocity v written on the graphs. Here 01 02 1 20, 0.1, ( , ) (0.7132,0.3394)k k    .----------------- 

represents fourth order results and ................. represents third order results 
 

DISCUSSION AND CONCLUSION 
 
We have derived analytically two coupled fourth order nonlinear evolution equations in deep water for two gravity wave packets 
propagated in the same direction in the presence of wind flowing over water. The reason for starting from fourth order nonlinear 
evolution equation is motivated by the fact, as shown by Dysthe (1979) that a fourth order nonlinear evolution equation is a good 
starting point for making stability analysis of a uniform wave train in deep water. Here we have used a general method, based on 
Zakharov integral equation for the derivation of evolution equations. The two evolution equations are then used to investigate the 
stability analysis of a uniform surface gravity wave train in the presence of another gravity wave train when the group velocities of 
the two wave train in the presence of first wave train are plotted in figure 1 for different values of wind velocity. We have also 
plotted the marginal stability curves of the second wave train in the absence of the first wave train in figure 2 for different values 
of wind velocity.  
 
It is found that the instability region of the second wave train expands due to the presence of the first wave train for fixed value of 
wind velocity. We also observe that the instability region is shortened slightly by the inclusion of fourth order terms. Further with 
the increase of wind velocity, the instability region is again shortened for fixed value of the amplitude of the first wave train. The 
growth rate of instability of the second wave train against the perturbation wave number have been plotted in figures 3, and 4 in 
the  presence of first wave train and for different values of wind velocity. We have plotted in figure 5 the similar curves in the 
absence of first wave train and also have plotted the corresponding curves that can be obtained from third order evolution 
equations. From these figures, it is found that the growth rate of instability of the second wave train increases due to the presence 
of the first wave train and it increases with the increase of the amplitude of the first wave train for fixed value of wind velocity. 
We also observe that the influence of fourth order terms is to increase the growth rate of instability. Further the growth rate of 
instability increases with the increase of wind velocity for fixed value of the amplitude of the first wave train. 
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(1) 2 2 (1) 2 2
1 1 2 1

(2) 2 2 (2) 2 2
1 2 2 2

(1 ) , (1 ) ,

(1 ) , (1 )

S v k S v k

S v k S v k
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   

     

       

Nomenclature 

                          

(1)

(1)

(1)

( 1, 2,3)

( 1,2,3,4)

( 1,2,3,4,5)

i

i

i

i

i

i










 


 

-  coefficients given in the Appendix, 

  - slowness parameter,  
  - wave steepness , 

   - elevation of the air water  interface, 

 -   frequency, 

1 2 3( , , , )T k k k k -scalar function  given first Zakharov, 

  - ratio of densities of air to water, 

  - frequency shift, 

   -  perturbed frequency at marginal stability. 

                               1 2 3( , , , )k k k k -wave vector, 

g  – acceleration due to gravity 

H  – Hilbert’s transform operator, 

 - wave  number, 

s  – dimensionless surface tension, 

 t –  time, 

v - air flow velocity, 

 GI       -growth rate of instability     
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