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THE INTEGRALS OF POISSON AND SCHWARTZ AND THE TRANSFORMATION OF LAPLACE
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ARTICLE INFO ABSTRACT

An article is devoted to a communication of transformation of Laplace with the decision of the task of
Dirichlet. With help of integrals of Poisson and Schwartz we obtain an inversion formula of the
transformation of Laplace by only positive values of argument. The expression of the sine-
transformation of Fourier through the cosine-transformation is found for the functions of hole type. A
special decisions of the task of Dirichlet in half-plane is considered.

Copyright © 2015 Andrey Pavlov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION
An article is devoted to a communication of transformation of Laplace with the decision of the task of Dirichlet (Lavrentiev,
Shabat, 1987)   in the upper half-plane. In opinion of author, the special decision of the task of Dirichlet from the 2,3 lemmas can
find an application in physical problems, such as a describing of the distribution of fluid or plasma in various areas. It should be
noted that the relationship between these two fundamental concepts of mathematics previously little-researched (in addition to the
original definition of the integral Schwartz (Lavrentiev, Shabat (1987), p.209, the (6) equality). Many of the works were devoted to
similar problems in terms of the Laplace transform (A.V.Pavlov (2011, 2013, 2014), Andrey Pavlov V. (2014 a,b,c),  B.J.Davis.
(2002), Sorokin, (2010), Lavrentiev andShabat (1987).  We consider a representation of the solution of the task of Dirichlet in the
upper half-plane in the form of Poisson's integral (Lavrentiev, Shabat, (1987), p.209, the (5) equality). The integral of Schwartz
describes this view in terms of analytical functions with a known valid part of u (x). Thisthe real part is defined on the real line and
coincides with the real function. In this situation the integral of Schwarz on complex axis coincides with the transformation of
Laplace of the transformation of Fourier of functions u (x).  The proposition 1 is devoted to description of the integral of Schwartz
in terms of transformation of Laplace. The results of the proposition 1 and the lemmas 1,2 enable to find exact formulas of the
transformation of Laplace in the form

2 2

0

( ) ( ) (1 ) [ ( )[ ( )] (0 ) ( ) ( ),u y u y L t y t y dt y u x u x


           

0

( ) (1 ) ( ) [0 ),yt istL y e dt e u s ds y
 

 



     
if the function u (p) is regular in  the all complex plane (a function of integer type).   This fact immediately leads to the formula of
Laplace transforms only for positive real values of argument (the remark 2 to theorem 1).
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The formula of this remark repeats the author's results contained in articles (Andrey Pavlov V. (2014 a,b,c), A.V.Pavlov (2013,
2014). In these articles the related formula is proved with help of other methods in a somewhat more general situation (not only for
functions of integer type). The methods in this article lead not only to new formulas of inversion (the new inversion formula for the
transformation of Laplace by only real positive values), but also make it possible to provide an expression for the cosine and sine
transformation of Fourier from   functions of integer type as

0 0

cos ( ) sin ( ) (0 )tx Z t dt i itx Z t dt x
 

     

where the right part is an analytical continuation from $p=s\in(0,\infty)$ to the $p=it, t\in(0,+\infty)$ (the theorem 1).  The theorem
1 is the main result of this article.The next result of the article is an explicit expression of sine   from cosine of the transformation of
Fourier of the functions of integer type (the remark 1 to the theorem 1) in the form

0 0

sin cos ( ( )) ( ) ( ) ( ) ( ),sx dx tx iu is dt u s u s u s s
 

        
where $u(p)$ is regular in the all complex plane.

In addition to the listed results the representation   of the integral of Schwartz as a real expression on real axis represents an
unconditional interest. The fact pointed out in the remark 3 of this article. These kinds of decisions in terms of the task of Dirichlet
are important from the point of view of physical applications, but this article is devoted to the exposition of the mathematical facts
only for the task of Dirichlet in the half-plane.

THE INTEGRAL OF SCHWARTZ AND THE TRANSFORMATION OF LAPLACE

We prove all the results of the article with help only well-known methods of the complex analysis.

By definition,

0

( ) (1 ) ( ) [0 )yt istL y e dt e u s ds y
 

 



      

We will use the definition of the integral of Schwartz ([6,p.209,the (6) equality] )

( ) (1 ) [ ( )[1 ( )] 0f p i u t t p dt Im p




      
From the equality in the Poisson integral (Lavrentiev, Shabat (1987), p.209, the (5) equality)   as a real part of the integral

of  Schwartz we get the lemma 1. By definition, uD is the area of regularity of the function

( )u p , ( ) ( ) uu p u p p D    , 0 .C {p Im p }   

Proposition

( ) ( ) 0L p u pi Re p   

and

( ) ( ) 0f ip L p Re p   
if uC D  , and

( ) , lim ( ) 0.
x

u x dx u x





    

Proof

From the integral of Schwartz (Lavrentiev, Shabat (1987), p.209, the (6) equality) we get

0
( ) lim ( ) ( ) ( )

p x Im p
Re f x Re f p u x x p x iy

  
        
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The only regular in C function with the real part ( )u x on real axis is ,[6,p.209],

and we obtain ( ) ( ) [0 )f iy u iy y    ,

where

( ) (1 ) [ ( )[1 ( )] [ ( )[1 ( )] ( ) [0 )f iy i u t t iy dt u t y it dt L y y
 

 

            
we changed the limits of integration in the definition of the ( )L y integral with help of the condition of  proposition (Fihtengoltz

1969) . It is obviously (Lavrentiev, Shabat, 1987), ( ) ( )f ip L p in the area of regularity of ( ) ( )f ip u ip , ip C . The

proposition is proved.

Lemma 1

For
( ) ( ) ( )u x u x x     

the equality

2 2

0

( ) ( ) (1 ) [2 ( )[ ( )] (0 )L y u iy u t y t y dt y


        
takes place, if uC D  , and, if

( )u x dx




   

Proof

From the proposition we get ( ) ( ) (0 )f iy L y y    , where for ( ) ( ) ( )u x u x x      we use equality

2 2

0

( ) (1 ) [ ( )[1 ( )] (1 ) [2 ( )[ ( )] (0 )L y Re u t y it dt u t y t y dt y 
 



            
(we changed the limits of integration in ( )L y ).

We can use the proposition, where ( ) ( ) (0 )L y u yi y     and the lemma 1 is proved (in the lemma 1

( ) ( ) ([0 )u yi Reu yi y    ).

We obtain, that for the u (ip) function is the analytical continuation of the ( )L p function from the right part of the complex axis to

the left part.

Lemma 2

For

( ) ( ) ( )u x u x x      
the equality

2 2

0

( ) ( ) (1 ) [ ( )[2 ( )] (0 )L y u iy i u t t t y dt y


         
takes place, if uC D  , and, if

( )u x dx




   

Proof.

For ( ) ( )u x u x   from the proposition the integral of Shvarch (Lavrentiev, Shabat (1987), p.209, the (6) equality) is equal to

( ) ( ) 0, 0, ( ) 0f p u p ic Im p ic u      
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2 2( ) ( ) (1 ) [ ( )[ ( )] 0,f iy L y i u t t t y dt y




       
(we changed the limits of integration in ( )L y ).

From the lemma 1 for 1( ) ( )pu p u p we get

2 2
1 1( ) (1 )(1 ) ( ) [ ( ) ( )] (1 ) ( ) ( ) (0 )L y i y u x u t y t y dt i y u iy u iy y





              
We obtain ( ) ( ) 0L p u ip Re p   , and by proposition ( ) ( ) 0f ip u ip Re p   .

The lemma 2 is proved.

Lemma 3

If ( ) ( ) ( ) ( )u x u x u x x       is regular in all the complex plane, if

2 2( ) ( )d u t dt dt u t dt
 

 

         

the function

0 0

( ) sin cos ( ) (0 ) ( ) ( ) ( )g s sx dx txu t dt s g s g s s
 

            
is regular in all the complex plane too.

(From the works (Andrey Pavlov V. (2014 a,b,c)) we can obtain the lemma 3, if only  the condition

( )u t dt




   

takes place, but the proof is substantially simpler).

Proof

From the equality for the Fourier transform (Kolmogorov, Fomin (1976))

2 ( ) ( ) 2 ( ) ( )isx itxu s e dx e u t dt u s s 
 



 

      

we obtain

0 0

2 ( ) ( ) ( )isx itx isx itxu s e dx e u t dt e dx e u t dt
   

 

 

     

0
0

lim ( )px itx

p is Re p
e dx e u t dt

 


  


 

0
0

lim ( ) ( ) ( ) ( )px itx

p is Re p
e dx e u t dt L s L s s

 


   


       

where

0

( ) ( ) 0px itxL p e dx e u t dt Re p
 






    
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0

( ) ( ) 0px itxL p e dx e u t dt Re p
 






    

and we obtain, that

2 ( ) ( ) ( ) ( )u s L s L s s       

From the theorem about the analytical continuation across the real axis (Lavrentiev, Shabat (1987)) the theorem is proved with help

of the theorem of Morer (Lavrentiev, Shabat (1987), p.60) we can define the functions ( ) 0,L p Re p   as

2 ( ) ( ) 0,u p L p Re p    and we obtain

2 ( ) ( ) ( )u p L p L p p C      

where C is the all complex plane - we use , that the ( ) ( ) ( )L p L p u p   functions are continuous on the boundary ( ) .

The fact is proved (G.M.Fihtengoltz (1969) ) with help of the obvious equalities

2 2 2 2 2 2 2( ) (1 ( ) ) ( ( ) ) (1 ) ( )itx itxe u t dt ix e d u t dt dt x d u t dt dt c x x
  

  

               

( ) ( )itxe u t dt u t dt
 

 

      

( )u x dx




   

We have proved, that the ( ) ( )L p L p  functions are regular in the all complex plane.

The lemma 3 is proved.

Theorem 1

0 ( ) ( ) (0 )iu ix u x x    

if

0

( ) ( )(cos ) [0 )u t Z x tx dt x


    

for a  function ( )Z x in the conditions of the lemma 3 (the u(x) function mast be regular in all the complex plane with some

additional conditions),where

0

0

( ) sin ( ) (0 )u x tx Z t dt x


    
Proof

If ( ) ( )u p u p p C    ,we can define

0

( ) cos ( ) [0 )Z x txu t dt x


    

0

0 0 0

( ) sin ( ) sin cos ( ) [0 )u s tx Z x dx sx dx txu t dt x
  

       
(we can use the inversion formula for the transforms of Fourier).
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From

2 2 2 2
1

0 0

cos ( ) (1 ) cos ( ( ) ) sin 0 0txu t dt x tx d u t dt dt c x x x
 

          

we can use the inversion formula for the transforms of Fourier  (Kolmogorov, Fomin (1976)), and the equality

0

0

( ) sin ( ) [0 )Z x txu t dt x


    
takes place.

From the lemma 3 the both functions 0 ( ) ( )u p u p are regular in the all complex plane and 0 0( ) ( ) ( )u x u x x      ,

(in the lemma 3 0( ) ( ) ( )g x u x x    . For both function we can use the lemma 2:

0 0

( ) 2 cos ( ) ( ) ( ) ( ) ( )sxL s e dx txu t dt u is u t u t t
 

         

0 0

0 0

2 sin ( ) ( ) ( )sx sxe dx txu t dt i e dx i sin tx u t dt
   

 

 

     

0

0

( ) ( ) ( )sx itxi e dx e u t dt iu is s
 

 



      

Remark 1

We have proved too, that

1 1

0 0

sin cos ( ) ( ) ( ) ( ) (0 )sx dx txu t dt u s iu is u si s
 

       

in the conditions of the lemma 3.

Remark 2

From the lemma 1 (with ( ) ( )u ix L x ) we obtain a new inversion formula for the Laplace transforms by only positive

values (A.V.Pavlov (2013, 2014), Andrey Pavlov V.(2014 a,b,c) - all with help of  other methods) :

2 2

0

( ) ( ) (1 ) [ ( )[ ( )] (0 )u y u y L t y t y dt y


         
if ( ) ( )u p u p p C    , and, if

( )u x dx




   

Proof

We can not use
2( ) ./ , ,L y const y y  but

2 2

0

(2 ) ( )[ ( )] Re ( ) ( ) [0 )L t y t y dt f iy f iy y


        

without the change of limits of integration with help of  the definition of the integral of Poisson ( Lavrentiev ,
Shabat (1987), p.209, the (5) equality)  for ,Re 0, [0, ),p iy p y    if
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( ) ( ) ( ) ( ), [0, ), lim ( ) 0,
y

u iy L y L y u iy y u iy


       

(we can use the condition  from the lemma 1, the last condition is obvious). Now, we can use lemma 1 (the only regular in

C function with the real part ( )L x on the real axis is ( ), ( ) 0f p L   ), and

Re ( ) ( ) ( ) ( ) ( ( )) ( ), (0 ).f iy f iy L iy L iy u i iy u y y       

The remark 2 is proved.

In the works (A.V.Pavlov (2011, 2013, 2014), Andrey Pavlov V. (2014 a,b,c)) the formula is proved   by other methods
for the more wide class of functions.

Remark 3

From the lemma 2 (in the condition of the lemma 2) we obtain the interesting fact:

( ( )) 0, ( , ),Im f x x   

if ( ( )) ( ), ( ( )) ( ) ( , ),Re f x u x Re u x u x x     where ( ) ( ) ( , ),u x u x x      but ( ( )) ( ) 0, ( , ).Im f ix u ix x    

Conclusion

In conclusion, we note, that the principal role of this theme is the Poisson integral Lavrentiev, Shabat (1987), p.209, the (5)
equality), comparison with which immediately leads to a non-trivial results lemme 1.2. Without the application of integral of
Poisson the results of 2,3 lemmas  impossible to prove by any other methods. However, the use of the task of Dirichlet and the
integral of Schwartz (Lavrentiev, Shabat (1987), p.209, the (6) equality) directly without a complicated calculations will have very
unexpected results (lemma 2-the view of the imaginary part of the decision). In conclusion, the author would like to point out, that
not only in the situation of the article for the task of Dirichlet (Lavrentiev, Shabat (1987)) the similar unforeseeable results
appeared (note the work (Pavlov A.V. (2014), Andrey Pavlov V. (2014 c)). It is also important to note, that the results do not seem
to be unpredictable by themselves without the use of the concepts of the odd ore even functions (A.V.Pavlov (2013, 2014), Andrey
Pavlov V. (2014 a,b,c)).
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